Basic Details:
- Course Code: EM 315
- Credits: 2
- Pre-requisites: None
- Compulsory/Optional: Compulsory
Aim :
To introduce numerical methods for solving mathematical models of Civil Engineering problems.
Intended Learning Outcomes:
On successful completion of the course, the students should be able to;
- Explain, apply and analyze numerical methods for finding roots of equations, interpolation and curve fitting.
- Explain, apply and analyze numerical methods for solving ordinary and partial differential equations.
- Select suitable algorithms and apply for solving partial differential equations related to Civil Engineering problems.
Couse Content:
Bisection method, method of false position, fixed-point iteration, Newton-Raphson’s method, and secant method.
Gaussian elimination, Jacobi method, Gauss-Seidel method .
Newton interpolating polynomial, Lagrange interpolating polynomial, Spline interpolation.
Linear regression, polynomial regression.
Gaussian Quadrature.
Initial value problems, Euler method, Runge - Kutta methods, boundary value problem, finite difference method .
Finite difference method, Elliptic equations, 1D and multi-dimensional problems, parabolic problems, Integral Equation Methods, Collocation method, Galerkin method, and Weighted Residual method.
Time Allocation (Hours):
Recommended Texts:
- C. Chapra and R.P. Canale, “Numerical Methods for Engineers”, 6th edition (2010), McGraw-Hill.