Course NO    : EM312
Course Title  : Fourier Analysis
Credits          : 3
Prerequisite  : None

Course Content Time Allocated
L T P A
  Review of Complex Number Theory

1



  Review of Taylor Approximation

1



  Approximation through Least Squares

2 1    
  Orthogonal Functions, Function space, Approximation of Functions
4  1    
  Fourier Series     
  • Fourier approximation, Half Fourier development, Parsevals theorem, Amplitude, Phase & Energy spectrums, Complex form of Fourier series
5 2    
  Harmonic Analysis
  • Numerical techniques for integration, Computation of Fourier coefficients, Least squares method to compute Fourier coefficients   
4  1    
  Fourier Integral Transform, Inverse Fourier Integral Transform
  • Continuous spectrums, sine & cosine integral transforms    
4 1    
  Properties on Theorems of  Fourier Transforms  

5    
  Laplace Transform and Inverse Laplace Transform
  • Properties & theorems of Laplace transform   
4 1    
  Computation Lab/ Assignments




12
  Total =30 + 9 + 0.5*12 = 45
30 9    12



 
Assessment Percentage Mark
Continuous Assessment   30
Class Participation
5
Tutorials 10
 
Assignments/ Lab
 15   
Written Examinations   70
Mid-Semester  20   
End of Semester 50  

Notation Used :
L - Lectures
T - Tutorials
P - Practical works
A - Assignments

<top>