Course NO    : EM308
Course Title  : Complex Analysis
Credits          : 2
Prerequisite  : Core C
our

ses in Mathematics


Course Content Time Allocated
L T P A
  Introduction
  • Complex numbers, Argand diagram
2      
  Analytic Functions
  • Limits, Continuity, Differentiability, Analytic Functions, Cauchy-Riemann equations, Harmonic functions
3 1    
  Complex Integration     
  • Line integrals properties, Contours, Jordan curve theorem, Green theorem, Cauchy's theorem, Cauchy integral formula
6 1    
  Complex Series     
  • Convergence, Tests for convergence, Power series, Taylor series, Laurent series
4      
  Theory of Residues      
  • Singularities and classification, Residue theorem, Calculation of residues, Argument principle, Rouche's theorem, Evaluation of definite integrals
6 1    
  Conformal Mappings
  • Complex mapping functions, Riemann's mapping theorem, General transformations, Linear transformation, Bilinear transformation, Selected special transformations, Inverse transformations, Schwarz-Christoffel transformation, Applications
5 1    
  Total = 26 + 4 = 30 26 4    



 
Assessment Percentage Mark
Continuous Assessment   10
Assignment 10  
Course work    
Written Examinations   90
Mid-Semester 20  
End of Semester 70  

Notation Used :
L - Lectures
T - Tutorials
P - Practical works
A - Assignments

<top>