Course Code	CP309				
Course Title	Biological Process Engineering				
No. of Credits	3				
Pre-requisites CP204					
Compulsory/Optional	pulsory/Optional Compulsory				
Aim(s): To provide essential knowledge to analyse and design industrial bioprocesses.					
Intended Learning Outcom	mes:				
On successful completion o	f the course, the students should be able to;				
ILO 1: Identify biological s	ystems for the production of commercial goods and s	services.			
ILO 2: Explain elementary	aspects of biological process engineering systems.				
ILO 3: Apply the knowledg	e of enzyme and cellular kinetics to design bio reactor	ors.			
ILO 4: Critically analyse th	e design and operational aspects of a selected industr	ial biopro	cess.		
Tonia	Time Allocation/Ho			urs	
		L	Т	Р	Α
• Biological systems for the production of commercial goods and					
services					
Food, drugs, chemicals,	, fuel, equipment, diagnostics, and waste treatment				
Biological basics					
Primary cell types, mic	crobial diversity, microbial growth (monod model,				
stoichiometry of cell growth), materials of cell construction				06	
(carbohydrates, proteins, lipids, nucleic acids), cell nutrients (carbon,					
nitrogen, oxygen, hydrogen and other).					
Enzyme kinetics					
Simple enzyme kinetics (Michaelis-Menten/ Briggs-Halden approaches),					
enzyme reactors with simple kinetics (Batch reactor, CSTR, PFR),			02	04	
inhibition of enzyme reactions (competitive/non-competitive/un-			02	04	
competitive inhibition), influences on enzyme activity (pH, temperature,					
shear), industrial applic	ations of enzymes.				
Cellular kinetics and fermenter design		05	02		16
Cell growth kinetics, ba	tch fermenter, PF fermenter, CSTF.	05	02		10
Sterilization					
Sterilization methods	(thermal/chemical/Irradiation etc.), thermal death				
kinetics (Isothermal/ N	on-isothermal), design criterion, batch sterilization,	05 02			
continuous steriliza	tion, other sterilization methods (Air				
sterilization/filtration).					
Aeration and scale-up		03			
Oxygen transfer in bioreactor systems, scale-up of fermenters.		05			
Downstream processing					
Intracellular/extracellular products, cell harvesting, cell disruption, cell		02			
debris/biomass removal, product extraction and purification.					
Total equivalent hours		26	06	05	08
Recommended Texts:		1	I	1	L
• Bisswanger, H., En	zyme Kinetics - Principles and Methods, (3 Ed). John	n Wilev &	Sons.	2017.	

Bisswanger, H., Enzyme Kinetics - Principles and Methods, (5 Ed), John Wiley &
Doran, P. M., Bioprocess Engineering Principles, (2 Ed), Academic Press, 2012.

- Ravi, R., Vinu, R., Gummadi, S. N., Coulson and Richardson's Chemical Engineering- Chemical & Biochemical Reactors and Reaction Engineering, (4 Ed), Butterworth-Heinemann, 2018.
- Shuler, M. L., Kargi, F., Bioprocess Engineering Basic Concepts, (2 Ed), Prentice-Hall of India, 2005.

Assessment	Percentage Mark			
In-course		50		
Tutorials/Assignments/Quizzes/Laboratory work	50			
End-semester		50		