Course Code	GP118	
Course Title	Basic Electrical and Electronic Engineering	
No of Credits	3	
Prerequisites	None	
Compulsory/Optional	Compulsory	

Aim(s): To provide students with an understanding of fundamental concepts and applications of a number of topics in electrical and electronic engineering.

Intended Learning Outcome:

On successful completion of this module, the students should be able to

- 1. analyse electrical circuits using fundamental laws and theorems,
- 2. analyze transient behavior of RLC circuits,
- 3. apply fundamental laws of electromagnetism and calculate basic quantities in electro and magneto static problems,
- 4. analyse electronic circuits and test their performance,
- 5. appreciate application of computer interfacing with analog and digital components.

No	Topics		Time Allocation / hours			
			Т	Р	Α	
1.	Electrical Circuits: Mesh and nodal analysis of dc circuits,					
	Thevenin's theorem, Norton's theorem, Maximum power transfer		2			
	theorem			3		
2.	RLC circuits: Transient analysis and RLC circuits under dc	4	1	1		
	excitations, Impedance and admittance concepts under ac excitations	4	1			
3.	Electromagnetism					
	• Electrostatic field concepts; capacitance; field mapping in					
	cylindrical systems; energy and mechanical force					
	• Magnetostatic field concepts, magnetic field calculations in simple	13	2	3		
	systems, magnetic force and torque, electromagnetic induction, self					
	and mutual inductance, leakage inductance and magnetizing					
	inductance, energy and mechanical force;					
4.	Electronic devices and Applications: Review of Diodes and					
	Transistors, Applications of Diodes and Transistors, Op-Amp	3	1	6		
	fundamentals and Applications, Linear and switch mode power	3	1	6		
	supplies.					
5.	Computer interfacing applications with analog and digital circuit	2			6	
	components				U	

Total	30	6	12	6	
-------	----	---	----	---	--

Note: L – Lectures; T – Tutorials; P – Practicals; A - Assignments

References:

[1] Edward Hughes, Ian Makenzie Smith, "Electrical Technology", Publisher - Longman Science & Technology, 1995; ISBN-13: 978-0582226968

[2] V.K. Mehtha, "Principles of Electrical Engineering and Electronics", 2010.

[3] Paul Horowitz, Winfield Hill, "The Art of Electronics", 3rd Edition, Cambridge University Press, 2015, ISBN-13: 978-0521809269

[4] Thomas C. Hayes, Paul Horowitz, "Learning the Art of Electronics: A Hands-On Lab Course", 1st Edition, Cambridge University Press, 1989, ISBN-13: 978-0521177238

Assessment	Percentage Mark
In-course	
Laboratories	20
Assignments	10
Mid-semester examination	20
End-semester examination	50