Course Code	EM524
Course Title	Design and Analysis of Experiments
No. of Credits	3
Pre-requisites	EM213
Compulsory/Optional	Optional

Aim(s): To develop the skills necessary to efficiently and effectively design and analyze experiments.

Intended Learning Outcomes:

On successful completion of the course, the students should be able to;

- Identify the most suitable design for an experiment.
- Apply statistical methods to design experiments and to analyze the data using astatistical software.
- Develop successful experiments that can lead to reduce development time, enhance process performance, and improve product quality.

Time Allocation (Hours): Lectures 30 Tutorials 7 Practical 16

Course content/Course description:

- Fully randomized design, Randomized complete block design, Latin square design: Introduction, design of the experiment, statistical analysis of the fixed effects model, estimation of the model parameters, pair wise comparisons of the means, residual analysis.
- Two factor and Three factor factorial designs: advantage of factorials, design of the experiment, testing for interactions, statistical analysis of the fixed effects model with and without interactions, estimation of the model parameters.
- 2^kfactorial designs: estimating factor effects, formulation of the model, statistical testing using ANOVA, residual analysis, blocking and confounding, interpretation of results.
- **Fractional factorial designs:** One-half fraction and one- quarter fraction of the 2^kfactorial design.
- **Taguchi method:**background and overview of Taguchi method, loss function, insight to orthogonal arrays, design of experiment, robust design using Taguchi method.
- **Response surface method:** Introduction, designs for fitting the first- order model and the second order model.

Recommended Texts:

- D.C. Montgomery, Design and Analysis of Experiments, 7thedition, (2008), John Wiley and Sons, Inc.
- D.C. Montgomery and G.C. Runger, Applied Statistics and Probability for Engineers, 6thedition, (2013), John Wiley and Sons, Inc.
- MadhavS. Phadke, Quality Engineering using Robust Design,1stedition,(1989), Prentice Hall.

Assessment	Percentage Mark
In-course	
Tutorials	10
Lab Assignments/Quizzes	20
Mid Semester Examination	20
End-semester	50