Course Code	EM 315		
Course Title	Numerical Methods for Civil Engineers		
No. of Credits	2		
Pre-requisites	-		
Compulsory/Optional	Compulsory		
Aim(s): To introduce numerical methods for solving mathematical models of Civil Engineering problems.			

Intended Learning Outcomes:

On successful completion of the course, the students should be able to;

- Explain, apply and analyze numerical methods for finding roots of equations, interpolation and curve fitting.
- Explain, apply and analyze numerical methods for solving ordinary and partial differential equations.
- Select suitable algorithms and apply for solving partial differential equations related to Civil Engineering problems

Time Allocation (Hours):	Lectures 26	Tutorials 04	Practical	Assignments

Course content/Course description:

- Error analysis
- **Solutions to nonlinear equations:** bisection method; method of false position; fixed-point iteration; Newton-Raphson's method; secant method.
- Numerical solutions to systems of linear equations: Gaussian elimination; Jacobi method; Gauss Seidel method
- **Interpolation:** Newton interpolating polynomial; Lagrange interpolating polynomial; Spline interpolation.
- Approximation and curve fitting: Linear regression; polynomial regression;
- Numerical Quadrature: Gaussian Quadrature
- Numerical solutions to ordinary differential equations: Initial value problems: Euler method, Runge - Kutta methods; Boundary value problem: Finite difference method
- Numerical solutions for partial differential equations: Finite difference method: Elliptic equations:1D and multi-dimensional problems; parabolic problems;

Integral Equation Methods: Collocation method, Galerkin method and Weighted Residual method ;

Recommended Texts :

• C. Chapra and R.P.Canale, (2010). *Numerical Methods for Engineers*, 6th edition, McGraw-Hill.

Assessment	Percentage Mark
In-course Tutorials/Quizzes Mid Semester Examination	20 30
End-Semester	50