	EM 203
Course Code	Numerical Methods in Chemical & Process Engineering
Course Title	
No. of Credits	3
Pre-requisites	-
Compulsory/Optional	Compulsory for Chemical & Process Engineering
	specialization

Aim(s):

Intended Learning Outcomes:

On successful completion of the course, the students should be able to;

- Use of modern computational and mathematical techniques in chemical and process engineering.
- Acquiring the knowledge, understanding and skills required for the use of pertinent software and appropriate programming language.
- Ability to solve sets of linear and nonlinear algebraic equations, ordinary differential equations, and differential-algebraic (DAE) systems in chemical and process engineering.
- Ability to solve partial differential equations obtained from transport phenomena in chemical and process engineering.

Time Allocation (Hours): Lectures 32 Tutorials Practical Assignments 13

Course content/Course description:

- Introduction to computing software
- **Introduction to numerical methods:** Error analysis.
- Numerical solutions to systems of linear equations: Gaussian elimination, Iterative methods, Relaxation methods
- Numerical solutions to non-linear equations: Fixed point iteration, Newton-Raphson method, System of non-linear equations
- **Numerical calculus:** Differentiation, Interpolation method, Finite difference integration, Newton-Cotes methods, Gaussian integration methods.
- Numerical solutions to ordinary differential equations: Initial value problems: Euler method, Runge-Kutta methods. Boundary value problems: Finite difference Method. Solving system of ordinary differential equations and higher order differential equations. Adaptive step size mechanisms
- Numerical solutions to partial differential equations: Explicit and implicit finite difference methods; Basics of finite element methods
- Assignments / Projects in chemical & process engineering (Assignments / Projects component must be coordinated and examined by the Department of C&PEng. since this components deal with examples from chemical and process engineering)

Recommended Texts :	
Steven C Chapra, Raymond P Canale. Numerical Methods (2010)ISBN: 0073401064	for Engineers, 6 th edition
	D M. I
Assessment In-course	Percentage Mark
Assignments / Projects	40
Mid Semester Examination	20
End-semester	40