Course Code	EM 203	
Course Title	Numerical Methods in Chemical and Process Engineering	
No. of Credits	3	
Pre-requisites	None	
Compulsory/Optional	Compulsory for Chemical and Process Engineering	
Aim(s): To provide the students with theoretical knowledge and practical experience of numerical methods so that they will be able to apply them in chemical and process engineering.		
Intended Learning Outcomes: On successful completion of the course, the students should be able to;		
• Use modern computational and mathematical techniques in chemical and process engineering		
• Acquire the knowledge understanding and skills required for the use of pertinent software and appropriate programming language		
• Solve set of linear and nonlinear algebraic equations, ordinary differential equations, and differential-algebraic (DAE) systems in Chemical and Process Engineering		
• Solve partial differential equations obtained from transport phenomena in Chemical		
and Process engineering		
Time Allocation (Hours	s): Lectures 32 Tutorials Practical Assignments 26	

Course content/Course description:

- Introduction to computing software
- Introduction to numerical methods: Error analysis
- Numerical solutions to systems of linear equations: Gaussian elimination, Iterative methods, Relaxation methods
- Numerical solutions to non-linear equations: Fixed point iteration, Newton-Raphson method, System of non-linear equations

• Numerical calculus:

Differentiation, Interpolation method, Finite difference integration, Newton-Cotes methods, Gaussian integration methods

• Numerical solutions to ordinary differential equations:

Initial value problems: Euler method, Runge-Kutta methods, Boundary value problems: Finite difference Method, Solving system of ordinary differential equations and higher order differential equations, Adaptive step size mechanisms

• Numerical solutions to partial differential equations: Explicit and implicit finite difference methods; Basics of finite element methods		
Recommended Texts :	E i oth 1'.	
• C. Chapra and R.P.Canale, (2000). <i>Numerical Methods for Engineers</i> , 5 th edition, McGraw-Hill		
Assessment	Percentage Mark	
In-course		
Assignments/Projects	40	
Mid Semester Examination	20	
End-semester	40	