
Chapter 4
Vibrations

Fig. 4.1 Tacoma Narrows bridge minutes before collapse. Figure curtesy of Wikipedia.

4.1 Vibration Analysis of a Spring Mass Damper System

A first approximation of a simple vibrating system would typically result in a spring mass
damper system such as the one shown in figure-4.2. For small deflections and velocities,
the viscous damping force exerted by the damper can be approximated by fd = −Cẋ and
the spring force can be approximated by fd = −Kx. Considering the free body diagram of
the systems shown in figure-4.3 and applying Newton’s equations for the mass M yields the
following linear ODE.

Mẍ(t)+Cẋ(t)+Kx(t) = f (t). (4.1)
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Fig. 4.2 Spring Mass Damper System.

Fig. 4.3 The Free Body Diagram of the Spring Mass Damper System.

Dividing by M and setting ω2
n = K

M and 2ζ ωn =
C
M in (4.1) we have

ẍ(t)+2ζ ωnẋ(t)+ω
2
n x(t) =

1
M

f (t). (4.2)

The parameter ωn is called the undamped natural frequency of the system and ζ is called
the damping ratio of the system. The reason for this nomenclature will be apparent when we
investigate the solutions of this differential equation.

Being a linear second order ODE one can solve (5.11). Since this differential equation was
derived by considering small deflections and velocities of the mass it is interesting to find out
if the solutions of the differential equation correspond to the physical behaviour of the SMD
system for small deflections.

One way of finding the solutions of this differential equation is the Laplace transform
method. For a given u(t) = 1

M f (t) that does not grow faster than an exponential function
it can be shown, owing to the linearity of the system, that the solution will also not grow faster
than an exponential function. Thus taking Laplace transform of both sides of (5.11) and using
the linearity property of the Laplace transform we have

L
{

ẍ(t)+2ζ ωnẋ(t)+ω
2
n x(t)

}
= L {u(t)} , (4.3)

(s2 +2ζ ωns+ω
2
n )X(s)− ẋ(0)− (s+2ζ ωn)x(0) = U(s). (4.4)

This yields
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X(s) =
1

s2 +2ζ ωns+ω2
n

ẋ(0)+
s+2ζ ωn

s2 +2ζ ωns+ω2
n

x(0)+
1

s2 +2ζ ωns+ω2
n

U(s). (4.5)

Since the Laplace is a one-to-one and onto operator its inverse exists and thus the the solution
can be uniquely determined to be x(t) = L −1{X(s)}. Using the linearity property of the
inverse we thus have

x(t) = ẋ(0)L −1
{

1
s2 +2ζ ωns+ω2

n

}
+ x(0)L −1

{
s+2ζ ωn

s2 +2ζ ωns+ω2
n

}
+L −1

{
1

s2 +2ζ ωns+ω2
n

U(s)
}
.

(4.6)

Observe that the first two terms depend on the initial conditions and do not depend on the
forcing while the last term does depend on the forcing but is in depend of the initial conditions.
Therefore we may breakup the solution into two parts such that x(t) = xIC(t)+ x f (t) where

xIC(t) = ẋ(0)L −1
{

1
s2 +2ζ ωns+ω2

n

}
+ x(0)L −1

{
s+2ζ ωn

s2 +2ζ ωns+ω2
n

}
, (4.7)

x f (t) = L −1
{

1
s2 +2ζ ωns+ω2

n
U(s)

}
. (4.8)

We will call the first part two parts given by xIC(t) that depends only on the initial conditions
the initial condition response while we will call the last part that depends only on the forcing
the forced response.

The inverse Laplace transforms of each of the terms are obtained by expanding the terms
in a partial fraction expansion. This depends on the roots of the polynomial

∆(s) = s2 +2ζ ωns+ω
2
n . (4.9)

The two roots , −λ1 and −λ2, of the polynomial are given by

−λ1 = ωn(−ζ +
√

ζ 2−1),

−λ2 = ωn(−ζ −
√

ζ 2−1).

Since the character of the solution is determined by the roots of the above polynomial it is
referred to as the characteristic polynomial of the system. These roots will be complex and
conjugate, real and distinct, or real and repeated depending on if 0 ≤ ζ < 1, ζ > 1, or ζ = 1
respectively.

Let us consider the case 0 ≤ ζ < 1. In this case the roots of the characteristic polynomial
∆(s) = s2 +2ζ ωns+ω2

n of the system are given by −λ1 =−ζ ωn + iωd and −λ2 =−ζ ωn−
iωd . A typical location of the roots of the characteristic polynomial in this case is shown in
figure-4.4. The plot of xIC(t) for several different values of ζ in the range 0≤ ζ ≤ 1 is shown
in figure-4.5.

Assume that the forcing is such that

L {u(t)}=U(s) =
N(s)

(s+β1)(s+β2) · · ·(s+βk)
.
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Fig. 4.4 A typical location of the roots, λ =−λ1,λ =−λ2, of the characteristic polynomial ∆(s) when
0≤ ζ < 1.

When 0 ≤ ζ ≤ 1 it is a straight forward exercise in partial fraction expansion to show that
(4.7) and (4.8) reduce to

xIC(t) = e−ζ ωnt

(
ẋ(0)
ωd

cos(ωdt−π/2)+
x(0)√
1−ζ 2

sin(ωdt +φIC)

)
1(t), (4.10)

x f (t) =
(
|α|e−ζ ωnt cos(ωdt +φ)+

(
r1e−β1t + · · ·+ rke−βkt

))
1(t), (4.11)

where ωd = ωn
√

1−ζ 2, φIC = arcsin
(√

1−ζ 2
)

, and the constants α and ri are determined
by,

α = (s+λi)G(s)U(s)
∣∣
s=−λi ,

ri = (s+βi)G(s)U(s)
∣∣
s=−βi .

4.1.1 Free Vibrations

When the external forcing f (t) is zero, that is U(s) = 0, we say that the system is exhibiting
free vibrations and if not we say that the system is exhibiting a forced vibration. In the case
of free vibrations we see that x f (t) ≡ 0 and thus the solution corresponds only to the initial
condition part xIC(t). Thus in the case of free vibrations the response of the system is

x(t) = xIC(t) = e−ζ ωnt

(
ẋ(0)
ωd

cos(ωdt−π/2)+
x(0)√
1−ζ 2

sin(ωdt +φIC)

)
1(t), (4.12)
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(a) For ζ = 0.1 (b) For different values of ζ in the range 0≤ ζ ≤ 1

Fig. 4.5 Initial condition response xIC(t) for several different values of ζ in the range 0≤ ζ ≤ 1.

when 0 < ζ < 1. Note that this is of the form

x(t) = xIC(t) = Ae−ζ ωnt sin(ωdt +φ)1(t), (4.13)

where A and φ are constants that depend on ζ ,ωn and the initial conditions x(0), ẋ(0).
Figure-4.5 shows the plot of xIC(t) for several different values of ζ . The solution exhibits

an amplitude decaying oscillatory behavior, of frequency ωd = ωn
√

1−ζ 2 for any initial
condition. Thus for 0 < ζ < 1 the system said to behave in an underdamped manner and ωd
the frequency of oscillation will be referred to as the damped natural frequency of the system.
Note that the damped free vibration response tends to zero asymptotically as t tends to infinity.

When ζ = 0, that is when there is no damping, the initial condition response is given by

x(t) = xIC(t) =
(

ẋ(0)
ωn

cos(ωnt−π/2)+ x(0)sin(ωnt +π/2)
)

1(t), (4.14)

which takes the form x(t) = xIC(t) = Acos(ωnt +φ) and represents an undamped oscillation
of frequency ωn. This motion is referred to as simple harmonic motion.

Twice differentiating (4.13) we see that the acceleration of the mass, when 0 < ζ < 1, takes
the form

ẍ(t) = ẍIC(t) = Ace−ζ ωnt sin(ωdt +φc)1(t), (4.15)

where Ac and φc are again constants that depend only on ζ ,ωn and the initial conditions
x(0), ẋ(0). Comparing this with the experimentally obtained acceleration of the unforced small
oscillatory response shown in figure-4.1.1 (b) of the spring mass damper system shown in
figure-4.1.1 (a) we see that the physical behaviour of the system matches very well with the
theoretically estimated acceleration of the mass that is given by (4.15).

4.1.2 Forced Vibrations and Resonance

In the case of forced vibrations it suffices to look at only the forced response x f (t) since the
initial condition part of the response dies out when damping is positive. We can show that the
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(a) Experimental setup of a SMD system (b) Experimentally measured acceleration of the SMD system.

forced response also can be broken up into two parts:

x f (t) = xtr(t)+ xss(t),

where

xtr(t) =
(
|α|e−ζ ωnt cos(ωdt +φ)

)
1(t), (4.16)

xss(t) =
(

r1e−β1t + · · ·+ rke−βkt
)

1(t). (4.17)

Once again we see that for positive damping the transient part of the response xtr(t) asymp-
totically tends to zero as t tends to infinity and hence it suffices to only look at the steady state
part of the forced response.

Let us consider a very particular type of forcing

f (t) = F0 cos(ωt)1(t).

Since u(t) = f (t)/M he Laplace transform of u(t) is

U(s) =
F0

M

(
s

s2 +ω2

)
=

F0

M

(
s

(s+ iω)(s− iω)

)
.

From (4.17) it can be shown that the steady state response of the system for sinusoidal
forcing is

xss(t) = χ(ω)F0 cos(ωt +φ(ω))1(t), (4.18)

where

χ(ω) =
1/M√

(ω2
n −ω2)2 +4ζ 2ω2ω2

n
(4.19)
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and

φ(ω) = arctan
(

2ζ ωωn

ω2
n −ω2

)
. (4.20)

Thus we see that the steady state response to sinusoidal forcing is also sinusoidal with fre-
quency of oscillation equal to that of the forcing frequency ω . However it differs from the
forcing in two distinct ways. One is that the amplitude of the steady state solution is χ(ω)
times the magnitude of the forcing while the other is that the phase of the steady state solution
is shifted by φ(ω) from the phase of the forcing. It is also important to note that the ampli-
tude magnification and the phase shift depend on the forcing frequency ω . We will see that
this observation has crucial implications for vibration analysis and control system design. In
summary:

For positively damped (ζ > 0) systems the solution of the system approaches the steady
state response. The steady state response to sinusoidal forcing is also sinusoidal with
oscillation frequency equal to that of the forcing frequency ω . However the amplitude of
the steady state sinusoidal response is χ(ω) times the amplitude of the forcing amplitude
and the phase of the steady state sinusoidal response is shifted by φ(ω) from that of the
forcing. The amplification factor χ(ω) and the phase shift φ(ω) depend on the forcing
frequency ω and are given by (4.19) and (4.20) respectively and are plotted in figure-4.6.

Fig. 4.6 The Frequency response of the Spring Mass Damper system

The important implication of this observation in forced vibration analysis is that the ampli-
tude of the forced response, χ(ω), reaches a maximum when the forcing frequency ω is equal
to a certain value ωr. Differentiating (4.19) we find this value to be given by

ωr = ωn

√
1−2ζ 2. (4.21)

Observe that as the damping becomes negligible the resonance frequency tends to the un-
damped natural frequency, ωn. When the forcing frequency reaches the resonance frequency
the amplitude of the forced response reaches a maximum value of
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xssmax =
F0/M

2ζ ω2
n

√
1−ζ 2

. (4.22)

This phenomena is called Resonance and ωr is called the damped resonance frequency. Ob-
serve that when the damping in the system is very small (ζ ≈ 0) the amplitude of vibration of
the forced system becomes very large and can cause catastrophic damage to the system.

Observe that χ(ω) and φ(ω) can be written as

χ(ω) = |G(iω)|

and
φ(ω) = ∠G(iω),

where

G(s) =
1/M

(s2 +2ζ ωns+ω2
n )
,

is called the transfer function of the spring mass damper system. In this context G(iω) is
called the frequency response of the system. Its magnitude χ(ω) is called the Magnitude
Bode response and its phase φ(ω) is called the Phase Bode response of the system. These are
plotted in figure-4.6 as a function of the ratio ω/ωn = f/ fn.

4.2 A 2-DOF Coupled Vibratory System

In this section we will begin to develop the tools necessary to analyze the vibratory motion
of coupled systems such as multi-story buildings, rotary machines mounted on elastic foun-
dations, and multi-rotor shafts. Specifically to keep things simple we will address in detail
a system that can be approximated as a 2-DOF coupled spring mass damper system with
external forcing.

Consider the coupled 2-DOF spring mass damper system shown in figure-4.7. Choosing
the equilibrium positions of the masses as the reference points and applying Newton’s laws
we obtain

m1ẍ1 +(c1 + c2)ẋ1 +(k1 + k2)x1− c2ẋ2− k2x2 = f1(t), (4.23)
m2ẍ2 + c2ẋ2 + k2x2− c2ẋ1− k2x1 = 0, (4.24)

where we have set f1(t) = p0 cos(ωt). We can write (4.23)-(4.24) asm1 0

0 m2


ẍ1

ẍ2

+
(c1 + c2) −c2

−c2 c2


ẋ1

ẋ2

+
(k1 + k2) −k2

−k2 k2


x1

x2

=

 f1(t)

0

 (4.25)

Let
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Fig. 4.7 A 2-DOF coupled spring mass damper system

x(t)=

x1(t)

x2(t)

 , f (t)=

 f1(t)

0

 , M =

m1 0

0 m2

 , C =

(c1 + c2) −c2

−c2 c2

 K =

(k1 + k2) −k2

−k2 k2

 .
Then we can write (4.25) as

Mẍ+Cẋ+Kx = f (t). (4.26)

Notice the similarity with the 1-DOF spring mass damper system. We are interested in solving
this 2nd order matrix ODE in order to understand the vibratory behavior of the system. We
do so in two steps. Recalling the crucial role the undamped natural frequency played in the
resonance analysis of the 1-DOF spring mass damper system we first investigate undamped
free vibrations of the system and then consider the damped forced vibration behavior of the
system.

4.2.1 Frequency Response

Similar to the 1-DOF case we begin by taking a close look at the response of the system by
taking the Laplace transform of both sides of (4.26)

L {Mẍ+Cẋ+Kx}= L { f (t)}. (4.27)

Then we have
(Ms2 +Cs+K)X(s) = (Ms+C)x(0)+Mẋ(0)+F(s), (4.28)
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where
X(s) = L {x(t)}, F(s) = L { f (t)}.

Let

∆(s) = (Ms2 +Cs+K) =

(m1s2 +(c1 + c2)s+(k1 + k2)
)
−(c2s+ k2)

−(c2s+ k2) (m2s2 + c2s+ k2)


Then from (4.28) we have that

X(s) = ∆(s)−1 ((Ms+C)x(0)+Mẋ(0))+∆(s)−1F(s),

and that

x(t) = L −1{
∆(s)−1 ((Ms+C)x(0)+Mẋ(0))

}
+L −1{

∆(s)−1F(s)
}
.

The first part of the right hand side of the above equation depends only on the initial conditions
while the second part depends only on the forcing. Thus similar to the 1-DOF case we can
write

x(t) = xIC(t)+ x f (t)

where

xIC(t) = L −1{
∆(s)−1 ((Ms+C)x(0)+Mẋ(0))

}
, (4.29)

x f (t) = L −1{
∆(s)−1F(s)

}
. (4.30)

Similar to the 1-DOF case it can be shown that when all k1,k2,c1,c2 > 0 the initial condition
response xIC(t) tends to zero as t tends to infinity. Thus it suffices to only consider the forced
response x f (t). It can be shown that

x f (t) = L −1


G1(s)F1(s)

G2(s)F1(s)


 ,

where

F1(s) = L { f1(t)}, G1(s) =
m2s2 + c2s+ k2

|∆(s)|
, G2(s) =

c2s+ k2

|∆(s)|
,

and

|∆(s)|= det(∆(s)) =
(
m1s2 +(c1 + c2)s+(k1 + k2)

)
(m2s2+c2s+k2)− (c2s+k2)

2. (4.31)

It can be shown that when all k1,k2,c1,c2 > 0 the transient part of the forced response asymp-
totically tends to zero when t tends to infinity and thus the solution tends to the steady state
part of the forced response. Hence if f1(t) = p0 cos(ωt) we have that
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xss(t) =

χ1(ω)p0 cos(ωt +φ1(ω))

χ2(ω)p0 cos(ωt +φ2(ω))

 ,
where

χ1(ω) = |G1(iω)|, (4.32)
χ2(ω) = |G2(iω)|, (4.33)

and

φ1(ω) = ∠G1(iω), (4.34)
φ2(ω) = ∠G2(iω), (4.35)

Making the following parameter changes

ω
2
n1 =

k1

m1
, ω

2
n2 =

k2

m2
, 2ζ1ωn1 =

c1

m1
, 2ζ2ωn2 =

c2

m2
, µ =

m2

m1

we have that the characteristic polynomial (4.31) is

|∆(s)|=
(

s4 +2(ζ1ωn1 +ζ2ωn2 +µζ2ωn2)s
3 +(ω2

n1 +ω
2
n2 +µω

2
n2 +4ζ1ωn1ζ2ωn2)s

2 +2(ζ2ωn2ω
2
n1 +ζ1ωn1ω

2
n2)s+ω

2
n1ω

2
n2

)

and hence

|∆(iω)|=
(

ω
4− (ω2

n1 +ω
2
n2 +µω

2
n2 +4ζ1ωn1ζ2ωn2)ω

2 +ω
2
n1ω

2
n2

)
+2i

(
(ζ2ωn2ω

2
n1 +ζ1ωn1ω

2
n2)ω− (ζ1ωn1 +ζ2ωn2 +µζ2ωn2)ω

3
)

χ1(ω) =

1
m1

√
(ω2

n2−ω2)2 +4ζ 2
2 ω2

n2ω2√(
ω4− (ω2

n1 +ω2
n2 +µω2

n2 +4ζ1ωn1ζ2ωn2)ω
2 +ω2

n1ω2
n2
)2

+4
(
(ζ2ωn2ω2

n1 +ζ1ωn1ω2
n2)ω− (ζ1ωn1 +ζ2ωn2 +µζ2ωn2)ω

3
)2 ,

χ2(ω) =

1
m1

√
ω4

n2 +4ζ 2
2 ω2

n2ω2√(
ω4− (ω2

n1 +ω2
n2 +µω2

n2 +4ζ1ωn1ζ2ωn2)ω
2 +ω2

n1ω2
n2
)2

+4
(
(ζ2ωn2ω2

n1 +ζ1ωn1ω2
n2)ω− (ζ1ωn1 +ζ2ωn2 +µζ2ωn2)ω

3
)2 ,

Making the further substitution ωn2 = αωn1 we have

χ1(ω) =

1
m1

√
(α2ω2

n1−ω2)2 +4ζ 2
2 α2ω2

n1√(
ω4− (1+α2 +µα2 +4αζ1ζ2)ω

2
n1ω2 +α2ω4

n1
)2

+4
(
(ζ2α +ζ1α2)ω3

n1ω− (ζ1 +ζ2α +µζ2α)ωn1ω3
)2 ,

χ2(ω) =

1
m1

αωn1

√
α2ω2

n1 +4ζ 2
2 ω2√(

ω4− (1+α2 +µα2 +4αζ1ζ2)ω
2
n1ω2 +α2ω4

n1
)2

+4
(
(ζ2α +ζ1α2)ω3

n1ω− (ζ1 +ζ2α +µζ2α)ωn1ω3
)2 ,

The frequency response X1(ω) of the coupled spring mass damper system when α = 2 and
µ = 0.5 is plotted in figure-4.8 for several low values of the damping ratios.

If the damping is negligible we have ζ1,ζ2 ≈ 0 and thus

χ1(ω) =
(ω2

n2−ω2)/m1(
ω4− (1+α2 +µα2)ω2

n1ω2 +α2ω4
n1
) , (4.36)

χ2(ω) =
ω2

n2/m1(
ω4− (1+α2 +µα2)ω2

n1ω2 +α2ω4
n1
) . (4.37)
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Fig. 4.8 The frequency response of the coupled spring mass damper system when ωn1 = 1, α = 2 and
µ = 0.5.

The denominator of χ1(ω) and χ2(ω) is the characteristic polynomial of the system with s
replaced by iω

|∆(ω)|=
(
ω

4− (1+α
2 +µα

2)ω2
n1 ω

2 +α
2
ω

4
n1
)
. (4.38)

The roots of this polynomial are given by

ω1 = ωn1

(
(1+α2 +µα2)−

√
(1+α2 +µα2)2−4α2

2

) 1
2

, (4.39)

ω2 = ωn1

(
(1+α2 +µα2)+

√
(1+α2 +µα2)2−4α2

2

) 1
2

. (4.40)

Observe that ω1 <ω2. Thus we see that the denominators of χ1(ω) and χ2(ω) become infinite
when the driving frequency is equal to ω = ω1 and ω = ω2. Thus ω1 and ω2 are called the
undamped resonance frequencies of the system.

From (4.36) we notice that the steady state amplitude reaches zero when the forcing fre-
quency satisfies ω = ωn2. This observation will play a crucial role in vibration mitigation in
systems to be investigated in the next section.

4.2.1.1 Tuned Mass Damper Vibration Absorber Design

Let us consider the problem of resonance mitigation in a machine with an unbalanced rotary
component. The unbalance will give rise to periodic forcing on the mountings of the machine
with frequency equal to the rotational frequency of the machine. The operating conditions of
the machine may require that the frequency take values in a certain finite range of frequencies.
If the natural frequency of the system comprising the machine plus mounts falls in this range,
the machine will exhibit large amplitude vibrations when the machine operating frequency is
close to this natural frequncy due to resonance. How does one devise a method to reduce this
large amplitude of vibration for the entire range of operating frequencies of the machine?

On a first approximation, the machine acted on by this forcing can be modeled as a sim-
ple 1-DOF spring mass system on which a force f (t) is acting. We neglect damping for the
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Fig. 4.9 The concept of a vibration absorber.

moment. Recall the conclusion made at the end of the previous section. There we saw that if
we connect another spring mass system with natural frequency close to that of the machine
then the amplitude of vibration of the machine becomes zero. However the addition of this
second system makes the composite system a 2-DOF system. Figure-4.9 shows the frequency
response of such a setup. The composite 2-DOF has two modes of vibration and hence two
resonance frequencies. If these two resonance frequencies fall inside the operating frequen-
cies of the machine resonance will occur now at two operating conditions. Thus the challenge
is to design this added system so that the natural frequencies of the composite system lie
well outside the operating region of the machine. We analyze this scenario a bit further using
(4.36) and (4.37). Let ωn1 be the natural frequency of the machine and let ωn2 be the natural
frequency of the added system.

Let γ = ωn1/ω . Then (4.36) and (4.37) can be written as

χ1(γ) =
(α2γ2−1)/m1

(1− (1+α2 +µα2)γ2 +α2γ4)
, (4.41)

χ2(γ) =
α2γ2/m1

(1− (1+α2 +µα2)γ2 +α2γ4)
, (4.42)

Furtermore from (4.123) and (4.123) we have

ω
2
2 −ω

2
1 = ω

2
n1

√
(1+α2 +µα2)2−4α2 . (4.43)

From (4.41) we find that the steady state amplitude reaches zero when α2γ2 = 1. That is
when ω = ωn2 = αωn1. Moreover the plot of (4.41) shows that the amplitude of vibration
of the main mass m1 remains small within a certain frequency range that falls between the
interval ω1 < ω < ω2. Thus tuned mass damper design objective reduces to that of finding
α such that the range of operational frequencies of the machine fall well within the interval
ω1 < ω < ω2. One way of doing this is by trying to maximize ω2−ω1 while ensuring that
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ωn2 = αωn1 falls in the middle of the interval between ω2 and ω1. That is we try to find α

such that ωn2 = αωn1 = (ω2 +ω1)/2 and ω2−ω1 is maximized.
From (4.43) we see that

(ω2−ω1)(ω2 +ω1) = (ω2−ω1)2αωn1 = ω
2
n1

√
(1+α2 +µα2)2−4α2 .

and hence

(ω2−ω1) =
ωn1

√( 1
α
+(1+µ)α

)2−4

2
.

For large α

(ω2−ω1)≈
ωn1(1+µ)α

2
.

Thus we see that (ω2−ω1) can be maximized by maximizing α and µ . However from (4.42)
we see that increasing α increases the amplitude of vibration of the added mass m2 and thus
requiring a compromise as typical in any engineering design problem. For practical purposes
we also desire to choose µ as small as possible.

Fig. 4.10 The amplitude magnification X1(ω) for several combinations of α and µ .

MATLAB Simulations

You may use the following M-files to generate the frequency response and the time response
of a coupled 2-DOF spring mass damper system.

Frequency Response

function [Mag,Ph,W]=FrequancyResponseCoupledSMD
z1=0; %zeta_1
z2=0; %zeta_2
w1=1; %omega_n1
w2=4; %omega_n2
m1=1; %m_1
mu=.1; %mu
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al=w2/w1; %alpha

num=[1 2*z2*w2 w2ˆ2];
den=[1 2*(z1*w1+z2*w2+mu*z2*w2) (w1ˆ2+w2ˆ2+mu*w2ˆ2+4*z1*z2*w1*w2) 2*(z2*w2*w1ˆ2+z1*w1*w2ˆ2) w1ˆ2*w2ˆ2];
[Mag,Ph,W]=bode(num,den);
plot(W,Mag)
end

Time Response

function [T,Y]=CoupledSpringMassDamperSystem(Tmax)
z1=0.1; % zeta_1
z2=0.1; % zeta_2
w1=1; % omega_n1
w2=2; %omega_n2
m1=1; %m_1
mu=.5; %mu
al=w2/w1; % alpha
x1bar=(-1+alˆ2-mu*alˆ2+sqrt((1+alˆ2+mu*alˆ2)ˆ2-4*alˆ2))/(2*alˆ2);

x0(1:2)=[x1bar;1];
x0(3:4)=[0;0];

[T,Y]=ode45(@CoupledSMDEqns,[0 Tmax],x0);
plot(T,Y(:,1:2))

function Xdot=CoupledSMDEqns(t,x)
X=x(1:2);
V=x(3:4);

f1=0;
C=[(2*z1*w1+mu*2*z2*w2) -mu*2*z2*w2;-2*z2*w2 2*z2*w2];
K=[(w1ˆ2+mu*w2ˆ2) -mu*w2ˆ2;-w2ˆ2 w2ˆ2];

xdot=V;
vdot=-C*V-K*X+[f1/m1;0];

Xdot=[xdot;vdot];
end
end
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4.2.2 Modal Analysis

In vibration analysis we are typically interested in near resonant conditions. That is, in cases
where the system is very lightly damped and the forcing frequency is close to the resonance
frequencies of the system. Since the behavior of the system depends smoothly on the damping
ratios we see that the real behavior of the system will thus be described in a qualitative and
approximately quantitative sense quite well by analyzing the case where the damping is zero.
Thus in this section we will assume that the damping is negligible and hence that the system
equations (4.26) are approximately given by

Mẍ+Kx = f (t), (4.44)

where f (t) = [ f1(t) 0]T . Multiplying the above equation by M−1 we have

ẍ+Ωx = M−1 f (t), (4.45)

where Ω = M−1K. Recall that, for notational convenience, in the previous section we had set

ω
2
n1 =

k1

m1
, ω

2
n2 =

k2

m2
, µ =

m2

m1
, α =

ωn2

ωn1
.

Then we have

Ω =

1/m1 0

0 1/m2


 (k1 + k2) −k2

−k2 k2

=

 k1+k2
m1
− k2

m1

− k2
m2

k2
m2

=

 (1+α2µ)ω2
n1 −µα2ω2

n1

−α2ω2
n1 α2ω2

n1

 .
Also recall from the previous section that the resonance frequencies correspond to the roots
of the characteristic polynomial of the system (4.38)

|∆(ω)|=
(
ω

4− (1+α
2 +µα

2)ω2
n1 ω

2 +α
2
ω

4
n1
)
,

and are given by (4.123) and (4.123)

ω1 = ωn1

(
(1+α2 +µα2)−

√
(1+α2 +µα2)2−4α2

2

) 1
2

,

ω2 = ωn1

(
(1+α2 +µα2)+

√
(1+α2 +µα2)2−4α2

2

) 1
2

.

Notice that |∆(ω)| = det(−ω2I +Ω) and hence that the resonance frequencies ω1 and
ω2 are the square roots of the eigenvalues of the matrix Ω .
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Let us investigate what the corresponding eigenvectors x̄ tell us. The eigenvectors are given
by the nontrivial solutions of

(−ω
2
i I +Ω)x̄i = 0. (4.46)

Recall that the eigenvectors are only unique up to a scalar multiplication. It is thus customary
to consider the normalized version in the analysis to avoid ambiguity. Since x̄1, x̄2 are the
eigenvectors of Ω we see that by definition Ω x̄1 = ω2

1 x̄1 and Ω x̄2 = ω2
2 x̄2. and hence if T =

[x̄1 x̄2] then ΩT = T D where D = diag{ω2
1 ,ω

2
2} is a diagonal matrix explicitly given by

D =

ω2
1 0

0 ω2
2

= T−1
ΩT.

Consider the coordinate transformation x = T z where z = [z1 z2]
T . Substituting in (4.45) we

obtain z̈1

z̈2

+
ω2

1 0

0 ω2
2


z1

z2

= T−1

 1
m1

f1(t)

0

 ,
and hence that in these new coordinates, z, the coupled pair of ODEs given by (4.45) reduce
to the uncoupled pair of equations

z̈1 +ω
2
1 z1 = γ1 f1(t), (4.47)

z̈2 +ω
2
2 z2 = γ2 f1(t), (4.48)

where we have denoted γ1 =
T 11

m1
and γ2 =

T 21

m1
with

T−1 =

T 11 T 12

T 21 T 22

 .
These equations are referred to as the normalized equations of the system (4.45). Since x = T z
notice that

x(t) = x̄1 z1(t)+ x̄2 z2(t).

and hence the response of the system x(t) is in fact a linear combination of the responses of
the two uncoupled oscillators z1(t) and z2(t). Thus the first equation corresponds to the first
mode, (4.123), while the second equation corresponds to the second mode, (4.123).
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In summary this shows that the coordinate transformation x = T z where the columns
of T are the eigenvectors of Ω has transformed the coupled system (4.45) to the pair of
uncoupled two 1-DOF spring mass systems (4.47) and (4.48). The response of the system
is a linear combination of the response of these two uncoupled systems that we refer to
as modes. Furthermore notice that even though the external force was only acting on the
first coupled oscillator in the physical system (i.e. mass m1), it is felt by both uncoupled
oscillators in these new coordinates.

Let x̄1 = [x̄11 x̄21]
T and x̄2 = [x̄12 x̄22]

T denote the normalized eigenvectors of Ω that
correspond to the two eigenvalues ω2

1 and ω2
2 respectively. Then from (4.46) we find their

components to explicitly satisfy

r1 ,
x̄11

x̄21
=

α2−1−µα2 +
√

(1+α2 +µα2)2−4α2

2α2 > 0, (4.49)

r2 ,
x̄12

x̄22
=

α2−1−µα2−
√

(1+α2 +µα2)2−4α2

2α2 < 0. (4.50)

Then from (4.51) we see

x(t) = x̄1 z1(t)+ x̄2 z2(t) = x̄21

r1

1

z1(t)+ x̄22

r2

1

z2(t). (4.51)

In the following we will consider two cases the unforced case: free vibrations, and the
forced case: forced vibrations.

4.2.2.1 Free Vibrations

In this section we will consider the case where the forcing is zero. That is f1(t) ≡ 0. Then
(4.47) and (4.48)

z̈1 +ω
2
1 z1 = 0

z̈2 +ω
2
2 z2 = 0.

The initial condition solution of this unforced system takes the form

z1(t) = A1 cos(ω1t +φ1),

z2(t) = A2 cos(ω2t +φ2),

where A1,A2,φ1 and φ2 are constants that are uniquely determined by the initial conditions
z1(0),z2(0) and ż1(0), ż2(0). Then from (4.51) we see that the general solution takes the form

x(t) = A1x̄1 cos(ω1t +φ1)+A2x̄2 cos(ω2t +φ2)
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= A1

x̄11

x̄21

cos(ω1t +φ1)+A2

x̄11

x̄21

cos(ω2t +φ2).

This shows us that when x(0)≈ x̄1, ẋ(0) = 0 then

x(t)≈ x̄1 cos(ω1t)

while when x(0)≈ x̄2, ẋ(0) = 0 then

x(t)≈ x̄2 cos(ω2t).

In the firs case both masses are oscillating in synchrony at a frequency ω1 while in the second
case both masses are oscillating in synchrony at a frequency ω2. Furthermore in the first case
if the second mass moves one unit then the first mass moves r1 units in the same direction,
where r1 > 0 is given by (4.123), while in the second case if the second mass moves one unit
then the first mass moves |r2| units in the opposite direction, where r2 < 0 is given by (4.123).
The response x̄1 cos(ω1t) is called the first mode of vibration while x̄2 cos(ω2t) is called the
second mode. These two responses are plotted in figure-4.11 for the case of µ = 0.5 and α = 2.
Relating these to the frequency response of the system shown in figure-4.8 we highlight that
the first mode corresponds to the first resonance condition while the second mode corresponds
to the second resonance condition.

4.2.2.2 Forced Vibrations and Resonance

In this section we consider the case where a sinusoidal forcing of f1(t) = f0 cosωt is applied
at t = 0 when the system is in rest and look at the steady state part of the response. From
(4.47), (4.48) we see that each of the two modes are excited by f0 cosωt. Thus we see from
(4.18) that the steady state solutions take the form

z1(t) = f0χ1(ω)cos(ωt +φ1(ω)),

z2(t) = f0χ2(ω)cos(ωt +φ2(ω)),

where for j = 1,2 the frequency responses are of the two uncoupled oscillators are given by
χ j(ω) = |G j(ω)| and φi(ω) = ∠G j(ω) where

G j(ω) =
γ j

−ω2 +ω2
j
.

This shows us that if the forcing frequency is close to ω j, the frequency corresponding to the
jth mode, then only z j(t) will have a very large amplitude compared to the other mode zk(t).
That is since x(t) = x̄1 z1(t)+ x̄2 z2(t) we see that when ω ≈ ω1

x(t)≈ x̄1 z1(t) = f0χ1(ω)cos(ωt +φ1(ω)) x̄1

while when ω ≈ ω2 then
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(a) The first mode of vibration with vibrational frequency ω1.

(b) The second mode of vibration with vibrational frequency ω2.

Fig. 4.11 The two modes of free vibration of the coupled spring mass system for α = 2 and µ = 0.5.

x(t)≈ x̄2 z2(t) = f0χ2(ω)cos(ωt +φ2(ω)) x̄2.

We invite the reader to compare these results with the frequency response of the system shown
in figure-4.8.

In summary we can conclude that when the forcing frequency is close to any of the
frequencies corresponding to a mode we will observe a large amplitude motion of that
mode. Thats is when the forcing frequency ω is close to ω j the steady state response of
the system x(t) takes the shape of the jth mode x̄ j and will be oscillating in synchrony at
a frequency close to ω ≈ ω j.

In vibration problems one is mainly interested in conditions near resonance and hence in the
case where damping is negligibly small. Since the behavior of the system depends smoothly
on the damping ratios we see that the real behavior of the system is describe in a qualitative
and approximately quantitative sense quite well by the above analysis.

We conclude by noting that in general the steady state response solution takes the form

x(t) = f0χ1(ω)cos(ωt +φ1(ω))x̄1 + f0χ2(ω)cos(ωt +φ2(ω))x̄2.
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4.2.3 Beating

In this section we will investigate closely a phenomena called beating. To do so we consider
the Wilberforce oscillatory system in the applied mechanics lab. A schematic of the setup
is shown in Figure: 4.12. The spring uncoils as it stretches and coils as it compresses. This
gives rise to a coupling of the lateral motion to the torsional motion of the mass. It can be
shown that, if the damping in the system is negligible and the displacements are small then
the motion of the system is sufficiently accurately described by the solutions of the coupled
set of equations given by

Mẍ+ kxx+ εθ = 0,
Iθ̈ + kθ θ + εx = 0,

where ε is the coupling parameter and is assumed to be very small (ie. ε << 1). Assume that
kx/M ≈ kθ/I.

Fig. 4.12 Wilberforce Vibratory System

Writing down the above coupled equations in matrix form we have ẍ

θ̈

+
ω2

x εM

εI ω2
θ


x

θ

=

0

0


where ω2

x = k
M , ω2

θ
= k

I , εM = ε

M and εI =
ε

I .
Resonance frequencies of the system are given by the square root of the eigenvalues of

Ω =

ω2
n εM

εI ω2
n

 .
That is by the solutions of the characteristic equation
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det


(ω2

x −ω2) εM

εI (ω2
θ
−ω2)


= ω

4− (ω2
x +ω

2
θ )ω

2 +(ω2
x ω

2
θ − εIεM) = 0.

When k/M ≈ k/I, as we observe for the device in the lab, we have ω2
x ≈ ω2

θ
= ω2

n and hence

ω
4−2ω

2
n ω

2 +(ω4
n − ε

2
n ) = (ω2−ω

2
n )

2− ε
2
n = 0,

where ε2
n = εIεM. The ω that satisfy this expression are explicitly given by

ω1 =
√

ω2
n − εn, ω2 =

√
ω2

n + εn,

These are the two resonant frequencies of the system. Let Ȳ1 = [x̄1 θ̄1]
T and Ȳ1 = [x̄1 θ̄1]

T be
the two corresponding eigenvectors that satisfy(ω2

x −ω2
j ) εM

εI (ω2
θ
−ω2

j )


x̄ j

θ̄ j

=

0

0

 .
As in section 4.2.2 we note that by definition ΩȲ1 = ω2

1Ȳ1 and ΩȲ2 = ω2
2Ȳ2. Thus if T =

[Ȳ1 Ȳ2] then ΩT = T D where

D =

ω2
1 0

0 ω2
2

 .
Hence if we use the new variable Y = T Z, where Z = [Z1, Z2]

T then the equation Ÿ +ΩY = 0
becomes T Z̈+ΩT Z = 0 and hence T Z̈+T DZ = 0 and finally by pre-multiplying by T−1 we
have Z̈ +DZ = 0. This gives the two uncoupled oscillators

Z̈1 +ω
2
1 Z1 = 0,

Z̈2 +ω
2
2 Z2 = 0.

The solution to these equations take the form Z1(t)=α1 cos(ω1t +φ1) and Z2(t)=α2 cos(ω2t +φ2)
where α1,φ1,α2,φ2 depend on the initial conditions.

From Y = T Z we thus see that any solution of the system takes the form

Y (t) = α1Ȳ1 cos(ω1t +φ1)+α2Ȳ2 cos(ω2t +φ2)

where the four unknowns α1,φ1,α2,φ2 are uniquely determined by the initial conditions of
the system x(0),θ(0), ẋ(0), θ̇(0). Given these four initial conditions the 4 arbitrary constant
can be uniquely determined.
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Fig. 4.13 The form of the solution Y (t).

For small coupling the binomial expansion gives ω1 ≈ (ωn− εn
2ωn

) and ω2 ≈ (ωn +
εn

2ωn
).

Let ωB = εn
2ωn

. Then

Y (t)≈ A1Ȳ1 cos(ωnt−ωBt +φ1)+A2Ȳ2 cos(ωnt +ωBt +φ2)

= A1Ȳ1 (cos(ωnt)cos(ωBt−φ1)+ sin(ωnt)sin(ωBt−φ1)) ,

+A2Ȳ2 (cos(ωnt)cos(ωBt +φ2)− sin(ωnt)sin(ωBt +φ2))

= (A1Ȳ1 cos(ωBt−φ1)+A2Ȳ2 cos(ωBt +φ2))cos(ωnt)
+(A1Ȳ1 sin(ωBt−φ1)−A2Ȳ2 sin(ωBt +φ2))sin(ωnt)
∼ Acos(ωBt +φ)cos(ωnt +ψ)

Figure-4.13 shows the response of Y (t) = Acos(ωBt +φ)cos(ωnt +ψ). This phenomena is
referred to as beating.
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4.3 n-DOF Undamped Vibration Analysis

In this section we generalize the modal analysis procedure that was used in section -4.2.2 for
the 2-DOF case.

The linearized model of a n-DOF undamped vibrational system can be written down as

Mẍ+Kx = f (t), (4.52)

where M and K are n×n positive definite matrices and x is a n×1 column matrix. Typically
M is a positive definite symmetric matrix and hence is invertible. Multiplying through by M−1

we have
ẍ+Ωx = M−1 f (t), (4.53)

where Ω = M−1K. Typically Ω is a tri-diagonal positive definite or positive semidefinite
matrix. Since Ω is tri-diagonal (4.53) represents a set of n number of coupled second order
differential equations.

4.3.1 Free Vibrations

Let us first consider the unforced case. That is the case where f (t)≡ 0.

ẍ+Ωx = 0, (4.54)

The unforced system (4.54) will have a synchronized solution of the form xm(t)= x̄m cos(ωt +φ)
if and only if it satisfies the linear second order equation (4.54). Substituting xm(t) =
x̄m cos(ωt +φ) in (4.54) we have

(−ω
2I +Ω)x̄m cos(ωt +φ) = 0.

Since cos(ωt +φ) is not identically zero this equation is satisfied if an only if there exists
x̄m 6= 0 such that

(−ω
2I +Ω)x̄m = 0.

There exists x̄m 6= 0 such that the above equation is satisfied only when the matrix (−ω2I+Ω)
is singular. That is only when det(−ω2I +Ω) = 0. This is true when ω2 equals the eigenval-
ues of Ω . The solutions x̄ are the corresponding eigenvectors of Ω . For typical vibrational
problems the eigenvalues of Ω are real, non-negative and distinct. Let these n eigenvalues be
0 ≤ ω2

1 < ω2
2 < · · · < ω2

n . Since eigenvalues are distinct and real the corresponding eigen-
vectors are real and form a linearly independent spanning set. Denote these corresponding
normalized eigenvectors by x̄m1, x̄m2, · · · , x̄mn. Thus we have shown that

xmk(t) = x̄mk cos(ωkt +φk)

is a solution of (4.53) with f (t)≡ 0 for all i = 1,2, · · · ,n. Such solutions are called the modes
of vibration of the system. Since the system (4.54) is linear we see that any linear combination
of the above modes is also a solution. The question we need to answer is if any general solution
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of (4.54) can be expressed as a linear combination of the modes. That is if any given solution
can be uniquely expressed in the form

x(t) =
n

∑
k=1

αkx̄mk cos(ωkt +φk) (4.55)

for some set of real numbers α1,α2, · · · ,αn and φ1,φ2, · · · ,φn. A specific solution of (4.54) is
uniquely determined by the complete specification of the 2n number of initial conditions x(0)
and ẋ(0). Thus let us see if we can uniquely determine the 2n number of arbitrary constants
αk and φk for i = 1,2, · · · ,n in terms of x(0) and ẋ(0). Differentiating the above expression we
see that

ẋ(t) =
n

∑
k=1
−ωkαkx̄mk sin(ωkt +φk).

Thus we have that

x(0) =
n

∑
k=1

αkx̄mk cos(φk),

ẋ(0) =
n

∑
k=1
−ωkαkx̄mk sin(φk).

For simplicity let us write these down as

x(0) =
n

∑
k=1

βkx̄mk, (4.56)

ẋ(0) =
n

∑
k=1

γkx̄mk, (4.57)

where βk = αk cos(φk) and γk =−ωkαk sin(φk).
To find these arbitrary constants we observe that the {x̄m1, · · · , x̄mn} are linearly independent

to each other. Thus we see that the matrix T = [x̄m1 · · · x̄mn] is invertible. Notice that then
(4.56) and (4.57) can then be written as x(0) = T β and ẋ(0) = T γ , where β = [β1 · · · βn]

T

and γ = [γ1 · · · γn]
T . Thus we see that the 2n number of unknown constants βk and γk

are uniquely determined by the expressions β = T−1x(0) and γ = T−1ẋ(0) that depend on
the initial conditions. This shows that any solution of the unforced system can be uniquely
expressed as a linear combination of the modes as in (4.80).

Denote by X the space of all solutions of the linear ODE (4.54). From linearity it follows
that if x1(t) and x2(t) are two arbitrary solutions of the system, that is if x1(t),x2(t)∈X , then
αx1(t)+βx2(t)∈X for all α,β ∈R. That is any linear combination of x1(t) and x2(t) is also
a solution. This shows that X is a vector space. What we have shown above is that the set of
2n number of matrix functions, xmkc(t) , x̄mk cos(ωkt) and xmks(t) , x̄mk cos(ωkt +π/2) =
x̄k sin(ωkt) for i = 1,2, · · · ,n, form a basis for X and hence that any general solution can be
expressed as a linear combination of these basis solutions.

We will now show that there exists a co-ordinate transformation in which the coupled set
of n second order ODEs reduce to a set of uncoupled second order ODEs. Let T be the
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modal matrix of Ω . That is, the columns of T are the eigenvectors of Ω . Then it follows that
ΩT = T D where D = diag{ω2

1 ,ω
2
2 , · · · ,ω2

n} and hence that D = T−1ΩT . Consider the linear
co-ordinate transformation x = T z. Then we find that in these new co-ordinates the equations
(4.54) become z̈+Dz = 0. Writing it out explicitly we obtain the n uncoupled second order
ODEs

z̈1 +ω
2
1 z1 = 0,

z̈2 +ω
2
2 z2 = 0,

...

z̈n +ω
2
n zn = 0.

Each of these represent a particular mode of free vibration of the system and corresponds to
a simple spring-mass system. Notice that what this says is that the unforced coupled system
(4.54) can in fact be visualized as a system of uncoupled spring-mass systems in the new trans-
formed coordinates z = T−1x. We know that the general solution of each of these uncoupled
systems take the form:

zk(t) = αi cos(ωkt +φk)

for some unknowns {αk,φk} that will depend on the initial conditions. Then using the fact
that x = T z we can write the solution of the system in the original coordinates as

x(t) =
n

∑
k=1

zk(t) x̄mk =
n

∑
k=1

αk x̄mk cos(ωkt +φk),

demonstrating again how a general solution is a linear combination of the modal solutions.
Notice that when x(0)≈ x̄mi and ẋ(0) = 0 then

x(t)≈ x̄mkzk(t) = x̄mk cosωkt.

4.3.2 Forced Vibration and Resonance

In the new coordinates z = T−1x we see that (4.53) takes the form

z̈+Dz = T−1M−1 f (t). (4.58)

Consider the case where one or all the degrees of freedom of the original system (4.53) are
excited by a force of the form f0 cosωt where f0 is some constant. Then f (t) is the form
f̄ cosωt where f̄ is a constant n× 1 matrix. Let T−1M−1 f̄ = ū = [ū1 ū2 · · · ūn]

T and then
equation (4.58) takes the explicit form

z̈1 +ω
2
1 z1 = ū1 cosωt,

z̈2 +ω
2
2 z2 = ū2 cosωt,
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...

z̈n +ω
2
n zn = ūn cosωt.

Thus we see that each of the modes are also excited by a sinusoidal force of the form ūi cosωt.
Thus we see that the steady state solutions (zero initial condition solutions) takes the form

zk(t) = χk(ω)cos(ωt +φk(ω)),

Here χk(ω) = |Gk(ω)| and φk(ω) = ∠Gk(ω) where

Gk(ω) =
1

−ω2 +ω2
k
.

This shows us that if the forcing frequency is close to ωk, the frequency corresponding to the
kth mode, then only zk(t) will have a very large amplitude compared to the rest of the z j(t).
Therefore we can conclude that when the forcing frequency is close to any of the frequencies
corresponding to a mode we will observe a large amplitude motion of that mode. Since x = T z
we see that

x(t) =
n

∑
k=1

zk(t) x̄mk =
n

∑
k=1

χk(ω)cos(ωt +φk(ω))x̄mk,

and hence that when the forcing frequency ω is close to ωk the steady state response of the
system x(t)≈ χk(ω)cos(ωt +φk(ω))x̄mk and hence takes the shape of the kth mode x̄mk.

4.3.3 Example on Modes of Atomic Vibrations

In this section we provide an example of how one may approximate the atomic vibrations
in a solid using classical Newtonian mechanics1. We consider the 1-D, poly atomic, N-
periodic, lattice with nearest neighbor interactions. The cells of the lattice are indexed by
n = 1, · · · ,N while the poly atoms within a cell are indexed by α = 1, · · · ,s. Denote the
displacement of the α th poly atom of the nth unit cell by q(α,n). The periodic boundary
conditions imply q(α,n + N) = q(α,n) and q(α + rs,n) = q(α,n + r) for all α and n. If
U(r(α,n)) is the interaction potential between the (α +n)th and (α−1+n)th particle, where
r(α,n) = q(α,n)−q(α−1,n), the equations of motion of the lattice are given by

mα q̈(α,n) =−U ′ (q(α,n)−q(α−1,n))+U ′ (q(α +1,n)−q(α,n)) , (4.59)

where an overdot means differentiation with respect to time and an overprime means differen-
tiating with respect to the position variable. A crucial assumption here is that the inter-atomic
potential between each particle is identical.

In the case of the harmonic lattice U(r(α,n)) = bα

2 r(α,n)2 and we have

1 This is supplementary reading.
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mα q̈(α,n) = (bα+1q(α +1,n)− (bα +bα+1)q(α,n)+bαq(α−1,n)) . (4.60)

Functions ψk(α,n)= 1√
mα N φk(α)eikasn, where φk(α) satisfy the periodicity conditions φk(α+

s) = eikasφk(α), satisfy the boundary conditions of the N-periodic poly atomic lattice. The
stationary lattice vibrations of the form

qk(α,n; t) = cke−iωt
ψk(α,n),

are a solution of the lattice equations if and only if ω satisfies the following difference equa-
tion:

ω
2
φk(α) =

(
− bα√

mαmα−1
z−1 +

(bα +bα+1)√
mαmα

− bα+1√
mαmα+1

z
)

φk(α), (4.61)

along with the periodic boundary conditions φk(α + s) = eikasφk(α) where zp is the pth shift
operator acting on the discrete variable α .

This is true if and only if ∣∣ω2I−A(k)
∣∣= 0, (4.62)

where A(k) is the complex s-periodic Jacobi matrix given by

A(k) =



(b1+b2)√m1m1
− b2√m1m2

0 · · · 0 0 −e−ikas b1√m1ms

− b2√m2m1
(b2+b3)√m2m2

− b3√m2m3
· · · 0 0 0

0 − b3√m3m2
(b3+b4)√m3m3

· · · 0 0 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.

0 0 0 · · · − bs−2√ms−2ms−3

(bs−2bs−1)√ms−2ms−2
− bs−1√ms−2ms−1

0 0 0 · · · − bs−1√ms−1ms−2

(bs−1+bs)√ms−1ms−1
− bs√ms−1ms

−eikas b1√msm1
0 0 · · · 0 − bs√msms−1

(bs+b1)√
msms



,

and thus ω2 is an eigenvalue of A(k) and for each k there exists s eigenvalues given by

ωβk = ωβ (k), for β = 1, · · · ,s.

These s number of expressions relating the wave vector k to the frequency of stationary vibra-
tions are referred to as the s branches of the dispersion curve. The normalized eigenmode of
the lattice associated with the frequency ωβk is

ψβk(α,n) =
1√

mαN
φβk(α)eikasn,

where φβk(·) is the normalized eigenvector of A(k) associated with the eigenvalue ω2
β
(k). It

can be shown, using properties of periodic Jacobi matrices, that φβk(α + s) = eikasφβk(α) and
that the eigenvectors of A(k) are orthogonal. Thus ψβk(α,n) form an orthonormal basis for
lattice displacements and a general lattice vibration can be expressed as

q(α,n; t) = ∑
β

∑
k

Qβk(t)ψβk(α,n). (4.63)
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Pre-multiplying (4.61) by φβ ′k(α) and summing over α it can be shown that

ω
2
βkδ (β −β

′) = ∑
α

bαρβ ′(−k)(α)ρβk(α), (4.64)

where

ρβk(α) =

(
φβk(α)
√

mα

−
φβk(α−1)
√

mα−1

)
.

Using (4.63) it follows that the kinetic energy of the lattice is given by

KE = ∑
β ,k

1
2

Q̇∗
βk(t)Q̇βk(t) = ∑

β ,k

1
2
|Q̇βk(t)|2.

Observing that

q(α,n; t)−q((α−1),n; t) = ∑
β ,k

1√
N

ρβk(α)Qβk(t)e
ikasn, (4.65)

and using (4.64) it can be shown that the potential energy is given by

PE = ∑
β ,k

1
2

(
∑
α

bαρβ (−k)(α)ρβk(α)

)
Q∗

βk(t)Qβk(t) = ∑
β ,k

ω2
βk

2
|Qβk(t)|2.

The Qβk(t) are referred to as the complex normal co-ordinates. The requirement that the dis-
placement q(α,n; t) be real implies that Q∗

βk = Qβ (−k). The generalized momentum conjugate
to Qβk is Pβk = Q̇∗

βk.
The canonical transformations given by

Qβk =
1
2

(
zβk + zβ−k +

i
ωβk

(
pβk− pβ−k

))
, (4.66)

Pβk =
1
2
(

pβk + pβ−k− iωβk
(
zβk− zβ−k

))
. (4.67)

relates the real normal co-ordinates zβk and its conjugate momentum pβk to their complex
counterparts. Using the real normal co-ordinates the classical Hamiltonian takes the uncoupled
form:

H0(z) = ∑
β ,k

1
2

(
p2

βk +ω
2
βkz2

βk

)
, (4.68)

and the corresponding classical Hamiltonian equations take the uncoupled form,

z̈βk =−ω
2
βkzβk. (4.69)

In the semi-classical quantum treatment these oscillators are considered to be quantum oscil-
lators.

Setting s = 1 and φk(1) = 1 we recover the monatomic 1D lattice. Note that φk(0) = φk(1−
1) = e−ikaφ(1).
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Fig. 4.14 Axially loaded beam

4.4 Free Vibration of an Axially Loaded Beam

Consider the axially loaded beam in the applied mechanics lab. A schematic of the setup is
shown in Figure: 4.14. It can be shown that, if the damping in the system is negligible and the
displacements are small then the motion of the system is sufficiently accurately described by
the solutions of the partial differential equation given by

∂ 2y
∂ t2 +

EI
ρA

∂ 4y
∂x4 +

P
ρA

∂ 2y
∂x2 = 0 (4.70)

where y is the transverse displacement of the beam, P is the axial compressive force, ρ is the
density of the material of the beam, and E is the modulus of rigidity, I is the cross sectional
moment of inertia, and A is the cross sectional area of the uniform beam. In this section we
will consider the case where the axial load is a constant.

When we observe any particular point on the beam when it exhibits a vibratory motion, we
see that the point oscillates periodically. Thus it is reasonable to search for solutions of the
form

y(x, t) = ψ(x)cos(ωt +φ). (4.71)

If such solutions exist then they should satisfy the above PDE and the boundary conditions

y(0, t) = 0, y(L, t) = 0, (4.72)

∂ 2y
∂x2 (0, t) = 0,

∂ 2y
∂x2 (L, t) = 0, (4.73)
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where L is the length of the beam. Let us proceed to check if there exists a solution of the
form (4.71) such that it satisfies the PDE and the boundary conditions given by (4.72)–(4.73).
Substituting (4.71) in the PDE we have(

−ω
2
ψ +

EI
ρA

d4ψ

dx4 +
P

ρA
d2ψ

dx2

)
cos(ωt +φ) = 0.

Since this expression should be true for all t and cosωt is not identically zero we have that for
the existence of a solution of the form (4.71) the function ψ(x) should satisfy

EI
ρA

d4ψ

dx4 +
P

ρA
d2ψ

dx2 −ω
2
ψ = 0. (4.74)

The requirement that the boundary conditions (4.72)–(4.73) be satisfied imply that ψ(x)
should satisfy

ψ(0) = 0, ψ(L) = 0, (4.75)

d2ψ

dx2 (0) = 0,
d2ψ

dx2 (L) = 0. (4.76)

Thus the problem of finding a solution of the form (4.71 reduces to that of solving a two-point
boundary value problem. That is to a problem of solving the ODE (4.74) subjected to the
boundary conditions (4.75)–(4.76).

We notice that functions of the form

ψk(x) = sin
(

kπx
L

)
(4.77)

for any integer k satisfies the boundary conditions (4.75)–(4.76). Thus it is reasonable to try
to see if ψk(x) satisfies the ODE (4.74). The function (4.77) satisfies the ODE (4.74) if and
only if (

EI
ρA

k4π4

L4 −
P

ρA
k2π2

L2 −ω
2
)

sin
(

kπx
L

)
= 0.

Thus in the case where P = Po is a constant, non-trivial ψk(x) that satisfies the ODE (4.74)
exist if and only if ω satisfies

ω
2 = ω

2
k =

k2π2

ρAL2

(
EIk2π2

L2 −Po

)
. (4.78)

Therefore we see that each

yk(x, t) = ψk(x)cos(ωkt +φk) = sin
(

kπx
L

)
cos(ωkt +φk) (4.79)

satisfies the PDE and the boundary conditions for any k = 1,2, · · · . These are called to modes
of vibration of the beam.
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Since the PDE is linear we see that any linear combination of the modes is also a solution.
Thus

y(x, t) =
∞

∑
k=1

αk sin
(

kπx
L

)
cos(ωkt +φk) (4.80)

is also a solution where α1,α2, · · · and φ1,φ2, · · · are unknown arbitrary constants. The ques-
tion that we need to answer is if any given solution can be written in the above form. It can
be shown that for this class of PDEs the initial conditions y(x,0) = y0(x) and ∂y

∂ t (x,0) = v0(x)
and the boundary conditions uniquely determine the solution. Since the above form satisfies
the boundary conditions what we need to see is if we can uniquely determine the α1,α2, · · ·
and φ1,φ2, · · · such that y(x,0) = y0(x) and ∂y

∂ t (x,0) = v0(x) is satisfied. That is we need to
answer if we can uniquely determine the α1,α2, · · · and φ1,φ2, · · · such that

y0(x) =
∞

∑
k=1

αk cosφk sin
(

kπx
L

)
, (4.81)

v0(x) =
∞

∑
k=1
−ωkαk sinφk sin

(
kπx
L

)
, (4.82)

for any given y0(x) and v0(x) that satisfies the boundary conditions. Let βk = αk cosφk and
γk =−ωkαk sinφk. Then the above two equations can be written as

y0(x) =
∞

∑
k=1

βk sin
(

kπx
L

)
, (4.83)

v0(x) =
∞

∑
k=1

γk sin
(

kπx
L

)
. (4.84)

Thus we see that if we can find unique β1,β2, · · · and γ1,γ2, · · · that satisfy the above two
equations we would succeed in solving the problem of finding a solution to (4.70) that satisfies
the boundary conditions and the given initial conditions.

Observe that

2
L

∫ L

0
sin
(

kπx
L

)
sin
(

lπx
L

)
dx =

0 if k 6= l

1 if k = l
. (4.85)

Multiplying (4.83) and (4.84) by 2
L sin

( lπx
L

)
and integrating over the interval [0,L] we have

2
L

∫ L

0
y0(x)sin

(
lπx
L

)
dx =

∞

∑
k=1

βk
2
L

∫ L

0
sin
(

kπx
L

)
sin
(

lπx
L

)
dx, (4.86)

2
L

∫ L

0
v0(x)sin

(
lπx
L

)
dx =

∞

∑
k=1

γk
2
L

∫ L

0
sin
(

kπx
L

)
sin
(

lπx
L

)
dx. (4.87)

Now from (4.85) we have that
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βl =
2
L

∫ L

0
y0(x)sin

(
lπx
L

)
dx, (4.88)

γl =
2
L

∫ L

0
v0(x)sin

(
lπx
L

)
dx, (4.89)

and therefore we have found a solution to (4.70) that satisfies the boundary conditions and the
given initial conditions. It can be shown that the solution to this type of problem is unique.
Thus we see that any general solution of (4.70) can be uniquely expressed as (4.80).

Note that the space F of sufficiently smooth functions defined on the interval [0,L] that
satisfy the boundary conditions is an infinite dimensional vector space. Then the relationship

〈 f ,g〉, 2
L

∫ L

0
f (x)g(x)dx (4.90)

for f ,g ∈F defines an inner product on F . With respect to this inner product we have that
the functions ψk = sin

(kπx
L

)
, are orthonormal to each other. That is

〈ψk,ψl〉=

0 if k 6= l

1 if k = l

Using these orthonormal functions we can write (4.83) and (4.84) as

y0(x) =
∞

∑
k=1

βkψk(x), (4.91)

v0(x) =
∞

∑
k=1

γkψk(x). (4.92)

Thus we see that

〈ψl,y0〉=
∞

∑
k=1

βk〈ψl,ψk〉,

〈ψl,v0〉=
∞

∑
k=1

γk〈ψl,ψk〉.

Which gives us

βl = 〈ψl,y0〉,
γl = 〈ψl,v0〉.

Compare this expression with expressions for βl and γl for the case where the system is of the
form ẍ+Ωx = 0.

On a side note: notice that this says that any function y0 ∈ F can be uniquely written
down as a linear combination of the orthonormal vectors ψ1,ψ2, · · · . Thus we see that the
set of vectors ψ1,ψ2, · · · form an orthonormal basis for F . We say that (4.91) is the Fourier
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Series of y0(x) and the β1,β2, · · · , the Fourier Co-efficients. Similarly We say that (4.92) is
the Fourier Series of v0(x) and the γ1,γ2, · · · , the Fourier Co-efficients.

In what follows, I would like to demonstrate that this process that we have followed is very
general. Observe that (4.70) can be expressed as

∂ 2y
∂ t2 +Hy = 0 (4.93)

where H : F →F given by

H =
EI
ρA

∂ 4

∂x4 +
Po

ρA
∂ 2

∂x2 , (4.94)

is a linear operator on functions defined on the interval [0,L] that satisfy the boundary con-
ditions. Let us consider this class of problems and try to see if they admit solutions of the
form

y(x, t) = ψ(x)cos(ωt +φ), (4.95)

where ψ ∈F . Substituting this in (4.93) we have the y(x, t) = ψ(x)cos(ωt +φ) is a solution
of (4.93) if and only if

(−ω
2 +H)ψ(x)cos(ωt +φ) = 0. (4.96)

Since cos(ωt +φ) 6= 0 we see that the above is true if and only if there exists ψ(x) 6= 0 such
that

(−ω
2 +H)ψ(x) = 0. (4.97)

Notice that this is an eigenvalue problem. In the case of the axially loaded beam, H is given
by (4.94). Thus in this case we see that the functions of the form sin

(
kπx+ϕk

L

)
are eigen-

functions of H with corresponding eigenalues ω2
k given by (4.78) for any k ∈ R. Notice that

there are infinitely many such continuum number of eigenfunctions. However we observe
that not all of these satisfy the given boundary conditions. Only the functions that satisfy
ϕk = 0 and k = 1,2, · · · satisfy the boundary conditions. Thus when H is restricted to F
the only eigenfunctions are ψk(x) = sin

(kπx
L

)
with eigenvalues given by (4.78) for any inte-

ger k = 1,2, · · · . Thus we see that there exists infinitely many discrete number of solutions
yk(x, t) = ψk(x)cos(ωkt +φk) that satisfy the PDE (4.93) and the boundary conditions. Since
the PDE (4.93) is linear any linear combination of these eigensolutions are also a solution of
(4.93). Thus when the eigensolutions are discretely many then any general solution can be
written down as

y(x, t) =
∞

∑
k=1

αkψk(x)cos(ωkt +φk). (4.98)

In the case of the axially loaded beam with pinned ends we have shown that the eigenfunctions
ψ1(x),ψ2(x), · · · are orthonormal with respect to the inner product
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〈 f ,g〉, 2
L

∫ L

0
f (x)g(x)dx (4.99)

defined on F . Using the inner product we find that

αl cosφl = 〈ψl,y(x,0)〉,

−ωlαl sinφl =

〈
ψl,

∂y
∂ t

(x,0)
〉
,

uniquely determines the αk and φk.
In general if the linear operator satisfies certain conditions it can be shown, similarly to

the case of the axially loaded beam, that there exists infinitely many such eigensolutions.
The boundary conditions will determine if the eigenvalues are discrete or continuous. In most
cases one can show that there exists an inner product 〈·, ·〉 on F such that the set of eigen-
solutions are orthonormal. Thus as before one can show that any given solution of (4.93) can
be expressed as a linear combination of these eigensolutions. If the eigenfunctions are dis-
crete this linear combination takes the form of an infinite series while if the eigenfunctions
are continuously many then the linear combination takes the form of an integral. This idea of
expressing any any solution using a sum of basis solutions is the notion of a Fourier series.
Thus we make a slight digression to study it in the next section.

4.4.1 The Basic Idea of Fourier Series

Consider the vector space of square integrable complex valued functions defined on the finite
interval [0,L]. Denote this space by F . That is if f ∈F then f : [0,L]→ C and∫ L

0
f ∗(x) f (x)dx < ∞.

For f ,g ∈F one can easily show that

〈 f ,g〉, 1
L

∫ L

0
f ∗(x)g(x)dx (4.100)

defines an inner product on the vector space F . It is easy to show that the set of functions

ψk(x) = ei 2kπx
L (4.101)

for any k = 0,±1,±2, · · · , are orthonormal to each other with respect to this inner product.
The question is do they span F . To find the answer we seek to see if any f ∈F can be written
as a linear combination of the ψk(x). That is given a f ∈F can we uniquely determine the
coefficients αk ∈ C such that

f (x) =
∞

∑
k=−∞

αk ψk(x) =
∞

∑
k=−∞

αk ei 2kπx
L . (4.102)
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Using the inner product one can show that

αk = 〈ψk, f 〉= 1
L

∫ L

0
f (x)e−i 2kπx

L dx (4.103)

Thus any f ∈ F can be uniquely expressed as (4.102) provided the infinite series (4.102)
converges. It can be shown that this series in fact converges. This is called the Fourier Series
of f ∈F .

In many practical situations of interest, especially when dealing with electromagnetic sig-
nals, the functions of interest are square integrable functions defined on the interval [0,∞).
Let us see how the above notions generalize to this case. That is let us investigate (4.102)
and (4.103) when limL→ ∞. Define ωk =

2kπ

L . Then one can define δωk =
2π

L . Then one can
re-write (4.102) as

f (x) =
1

2π

∞

∑
k=−∞

Lαk eiωkx
δωk.

F(ωk) = Lαk =
∫ L

0
f (x)e−iωkx dx.

Thus in the limit limL→ ∞ the above expressions become

f (x) =
1

2π

∫
∞

−∞

F(ω)eiωx dω. (4.104)

F(ω) =
∫

∞

0
f (x)e−iωx dx. (4.105)

In the case where we deal with square integrable functions the Fourier coefficients (4.105)
are called the Fourier Transform of f (x) and the Fourier integral (4.104) is called the Inverse
Fourier Transform of F(ω).

4.5 Forced Vibration of an Axially Loaded Beam

In this section we will consider two types of periodic forcing acting on an axially loaded beam.
In the first instance we will consider the case where the axially loaded beam is transversely
excited using a periodic force distributed along the length of the beam and in the second
instance we will consider the case where the axial load itself is periodically varying.

4.5.1 Transversely Forced Axially Loaded Beam

Consider the transversely forced axially loaded beam model written as
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∂ 2y
∂ t2 +Hy = q(x, t), (4.106)

where q(x, t) ∈F for all t. Since q(x, t) ∈F for all t we can write

q(x, t) =
∞

∑
k=1

fk(t)ψk(x),

where ψk are eigenvectors of H that satisfy the boundary conditions.

fk(t) = 〈ψk,q(x, t)〉.

If the solutions exists we know that the solution y(x, t) ∈ F for all t as well. Thus the
solution can be expressed as

y(x, t) =
∞

∑
k=1

αk(t)ψk(x).

Substituting this in the PDE we have

∞

∑
k=1

(α̈k +ω
2
k αk− fk)ψk = 0.

Since the ψk are linearly independent we have that necessarily

α̈k +ω
2
k αk = fk,

where ω2
k is the eigenvalue of H corresponding to the eigenvector ψk. Since this is a linear

system one can easily solve this. In the case where the initial conditions are zero and the
forcing is of the form q(x, t) = qs(x)cosωt we see that

αk(t) = βkχk(ω)cos(ωt +φk(ω)),

where βk = 〈ψk,qs〉.
Here χk(ω) = |Gk(ω)| and φk(ω) = ∠Gk(ω) where

Gk(ω) =
1

−ω2 +ω2
k
.

Thus in the case where the forcing is of the form q(x, t) = qs(x)cosωt and the initial con-
ditions are zero the forced vibration of the axially loaded beam can be explicitly written down
as

y(x, t) =
∞

∑
k=1
〈ψk,qs〉χk(ω)cos(ωt +φk(ω)) sin

(
kπx
L

)
.

Observe that resonance occurs when ω = ωk for each k.
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4.5.2 Periodically Varying Axially Loaded Beam

Let us consider the axially loaded beam (4.70) and investigate what happens if the axial load
is of the form P(t) = Po− f (t) where f (t) is periodic in time with period T and Po is constant.
Then the (4.70) beam takes the form

∂ 2y
∂ t2 +Hy− f (t)

ρA
∂ 2y
∂x2 = 0, (4.107)

where

H =
EI
ρA

∂ 4

∂x4 +
Po

ρA
∂ 2

∂x2 ,

We have seen that the eigen functions ψk(x) = sin
(kπx

L

)
of H with corresponding eigenval-

ues ω2
k given by (4.78) are a basis for the solution space. Thus as done in the previous section

let us see if the system admits solutions of the form yk(x, t) = γk(t)sin
(kπx

L

)
. Substituting this

in the PDE we have (
γ̈k +

(
ω

2
k +

f (t)
ρA

k2π2

L2

)
γk

)
sin
(

kπx
L

)
= 0.

Thus the γk(t) should satisfy

d2γk

dt2 +(ω2
k +µk f (t))γk = 0, (4.108)

where

ω
2
k =

k2π2

ρAL2

(
EIk2π2

L2 −Po

)
and µk =

k2π2

ρAL2 . Thus the solution of the axially loaded beam (4.70) will be of the form

y(x, t) =
∞

∑
k=1

γk(t)sin
(

kπx
L

)
, (4.109)

where each γk(t) are the solutions of the equation (4.108) with initial conditions γk(0) =
〈sin

(kπx
L

)
,y0〉 and α̇k(0) = 〈sin

(kπx
L

)
,v0〉.

The above solution is stable as long as all the γk(t) are stable. Thus it is of practical interest
to investigate the solutions of the equation (4.108) and stability of the origin when the axial
forcing f (t) is periodic. That is when f (t+T ) = f (t) for all t. This equation is called the Hill’s
equation and in the special case where f (t) is sinusoidal it is called the Mathieu equation.

We note that the Hill’s equation (4.108) can be written down as

d
dt

x1

x2

=

 0 1

−(ω2 +µ f (t)) 0


x1

x2

 , (4.110)

where f (t +T ) = f (t) for all t ∈R. That is it takes the form ẋ = A(t)x where A(t) is periodic.
We will study this general case below.
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4.6 Floquet Theory

Consider the time varying linear system

ẋ = A(t)x, (4.111)

where A(t +T ) = A(T ) ∀ t ∈ R. The study of the solutions of this type of systems is called
Floquet theory.

Let Φ(t) be a fundamental matrix solution of this system. That is Φ(t) is a solution of the
matrix differential equation

Φ̇ = A(t)Φ , (4.112)

with initial condition Φ(0) = I3×3.
Let Ψ(t) = Φ(t + T ). Then Ψ̇(t) = Φ̇(t + T ) = A(t + T )Φ(t + T ) = A(t)Φ(t + T ) =

A(t)Ψ(t) Thus we see that Φ(t +T ) is also a solution of (4.112) with initial conditions Φ(T ).
Since Φ(t) is invertible for all t so is Ψ(t) = Φ(t +T ). Thus Φ(t +T ) is also a fundamental
matrix solution of (4.112). One can show that Φ(t)Φ(T ) is also a fundamental matrix solution
with initial condition Φ(T ) thus from uniqueness of solutions we have that

Φ(t +T ) = Φ(t)C (4.113)

where we have defined C ,Φ(T ). Recall that C =Φ(T ) is invertible. Thus there exists a n×n
matrix ζ such that C = eT ζ . Then we see that the matrix function Q(t) = Φ(t)e−tζ satisfies
Q(t + T ) = Φ(t + T )e−(t+T )ζ = Φ(t + T )e−(t+T )ζ = Φ(t)eT ζ e−(t+T )ζ = Φ(t)e−tζ = Q(t).
Thus we see that

Φ(t) = Q(t)etζ , (4.114)

where Q(t+T ) =Q(t) for all t. Since eT ζ+i2πkI = ei2πkeT ζ = eT ζ we note that ζ is not unique.
Consider the coordinate transformation x(t) = Q(t)y(t). Then

ẋ = Ax = Q̇y+Qẏ = Φ̇e−tζ y−Φe−tζ
ζ y+Qẏ.

Ax = AΦe−tζ y−Φe−tζ
ζ y+Qẏ = Ax−Qζ y+Qẏ.

Which gives the time invariant system

ẏ = ζ y. (4.115)

the coordinate transformation x(t) = Q(t)y(t) is known as the Lyapunov transformation. We
state these results in the following theorem.
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Theorem 4.1 (Floquet Theorem). Consider the time varying periodic system ẋ = A(t)x
where x(t) ∈Rn and A(t +T ) = A(t) for all t ∈R. Let Φ(t) be the solution of the matrix
differential equation Φ̇ = A(t)Φ with initial condition Φ(0) = In×n. We will call the
matrix Φ(t) the fundamental matrix solution of the time varying periodic system. One
can show the following properties of the fundamental matrix solution:

(a) Φ(t) is defined for all t ∈ R and the inverse Φ−1(t) exists for all t ∈ R.
(b) Φ(t +T ) = Φ(t)Φ(T ).
(c) There exists an n×n matrix ζ such that Φ(T ) = eT ζ .
(d) There exists a matrix Q(t) such that Q(t +T ) = Q(t) and Φ(t) = Q(t)etζ .
(e) Let y = Q(t)x, then ẏ = ζ y.

The eigenvalues of Φ(T ), denoted by ρ1,ρ2, · · · ,ρn, are called the Floquet multipliers (char-
acteristic multipliers) of the system and if λ1,λ2, · · · , λn are the eigenvalues of ζ then they are
called the characteristic exponents. Observe that they are related by ρk = eλkT . The character-
istic exponents are unique modulo i2πk however the multipliers are unique.

Note that a solution x(t) of (4.111) with initial condition x(0) satisfies

x(t) = Φ(t)x(0) = Q(t)etζ x(0). (4.116)

We know that the equilibrium solution x(t) ≡ 0 is a solution. We are interested in knowing
if solutions with initial conditions close to 0 will stay near 0, converge to 0, or diverge from
0. Since Q(t) is periodic the above expression (4.116) shows that the answer to the above
problem depends on the eigenvalues of ζ .

Let S be the invertible matrix such that S−1ζ S = D+N where D is a diagonal matrix with
eigenvalues of ζ in its diagonal and N a nilpotent matrix. Then we see that if x(t) = Sz(t)

z(t) = (S−1Q(t)S)etDetN z(0). (4.117)

Thus one can conclude the following:

Theorem 4.2 (Stability of Periodic Time Varying Linear Systems).
a. limt→∞ x(t)→ 0 if and only if all eigenvalues of ζ are in the strict left half complex plane.

That is if and only if |ρk|< 1.
b. The system admits a periodic solution if ζ has a zero eigenvalue with multiplicity one. That

is if there exists ρk = 1 with multiplicity one.
c. The system admits a 2-periodic solution if ζ has a eigenvalue of the form i(2k+1)π

T with
multiplicity one where k is any integer. That is if there exists ρk =−1 with multiplicity one.

d. The system admits solutions that become unbounded if ζ has eigenvalues in the strict right
half plane. That is if there exists |ρk|> 1.

Since the above shows that the Floquet multipliers play a crucial role in determining the
type of solutions the following property will become useful. Using the derivative of the det
operator we have that

ρ1ρ2 · · ·ρn = det(Φ(T )) = etrace(T ζ ) = e
∫ T

0 trace(A(s))ds. (4.118)
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The Case where n = 2.

In this case one finds that eT (D+N) must take one of the following forms.

eT (D+N) =

eλ1T 0

0 eλ2T

 , eT (D+N) =

eλT 0

0 eλT

 ,

eT (D+N) =

eλT TeλT

0 eλT

 , eT (D+N) = eσT

cosΩT −sinΩT

sinΩT cosΩT

 .
In each case we have

ρ1ρ2 = eλ1T eλ2T , ρ1ρ2 = e2λT , ρ1ρ2 = e2λT , ρ1ρ2 = eσT .

From these normal forms we can conclude the following:

For periodic time varying linear systems on R2 with period T ,

(a.) for global asymptotic stability of the origin all the multipliers should be inside the
unit disk.

(b.) if any of the multipliers are outside the unit disk then the origin is unstable.
(c.) if the multipliers are purely imaginary and of magnitude one then the origin is stable.
(d.) if the multipliers are equal to +1 and eT (D+N) takes the second form then the solutions

are periodic with period T . The origin is unstable if eT (D+N) is of the third form.
(e.) if the multipliers are equal to -1 and eT (D+N) takes the second form then the solutions

are periodic with period 2T . The origin is unstable if eT (D+N) is of the third form.

4.7 The Mathieu Equation

We have seen how the problem of the stability of the modes of the periodically excited ax-
ially loaded beam reduces to that of the stability of the Mathieu equation in section-4.5.2.
It has been found that the Mathieu equation also arises in electrical and thermal diffusion,
electromagnetic wave guides, elliptical cylinders in viscous fluids, diffraction of sound and
electromagnetic waves, elliptic membranes, ring antennas, alternating gradient focusing, the
Paul trap for charged particles, the mirror trap for neutral particles, the stabilization of the
inverted pendulum, and stabilization of electrostatic MEMS. In the sections below we will
first apply the Floquet theory presented in the previous section to study the solutions of the
Mathieu equation. Then we will these results to the study of the stability of the periodically
excited axially loaded beam and the stabilization of the inverted pendulum.

First let us apply the Floquet theorem treated in the previous section to the study the stability
of the origin of the normalized Mathieu equation
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ÿ+(α + ε cos t)y = 0. (4.119)

This equation can be expressed as

d
dt

y1

y2

=

 0 1

−(α + ε cos t) 0


y1

y2

 (4.120)

We are interested in answering the following questions about system (4.120). For what
values of α and ε will

a. the origin be globally asymptotically stable?
b. periodic solutions of period T = 2π exist?
c. periodic solutions of period T = 4π exist?
d. the origin be stable?

Floquet theory tells us that the solution takes the forms

x(t) = P(t,α,ε)etζ (α,ε),

where ζ (α,ε) is defined by
eT ζ (α,ε) = Φ(T,α,ε),

with T = 2π . We have explicitly indicated that P,ζ ,Φ also depend on the parameters α and ε

We begin by noticing that ε is very small and that when ε = 0 we have periodic solutions
of period 2π/

√
α . In this case the state transition matrix is

Φ(t,α,0) =

 cos
√

αt 1√
α

sin
√

αt

−
√

α sin
√

αt cos
√

αt


Since T = 2π√

α
when ε = 0, the characteristic multipliers are given by

ρ(T,α,0) = cos
√

αT ± isin
√

αT.

Observe that ρ(2π/
√

α,α,0) are complex conjugate and are on the unit disk. From which we
can conclude, as already we know, that periodic solutions of period T = 2π/

√
α exists. We

also see that when α is very small the multipliers are close to 1. The question we are interested
in answering is what happens when ε 6= 0 but is very small.

From continuity arguments we could imagine that for very small ε the state transition matrix
should also be close to Φ(t,0). Thus we assume

Φ(t,α,ε) = Φ(t,α,0)+ εΦε(t,α)+ ε
2
Φε2(t,α)+ · · ·

and
ρ(T,α,ε) = ρ(T,α,0)+ ερε + ε

2
ρε2 + · · ·
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Thus for small epsilon it is plausible that the characteristic multipliers are also close to
cos
√

αT ± isin
√

αT as well.
From (4.118) we see that

ρ1(T,α,ε)ρ2(T,α,ε) = 1.

Thus for all α,ε the multipliers should either lie on the unit disk or be real. If they are real
the multipliers are the reciprocal of each other. Thus if the multipliers are real one of the
multipliers will necessarily be greater than one and hence the origin will be unstable. The
question we need to answer is for what values of α,ε will the multipliers be purely imaginary
or real. The following map that was generated numerically shows the regions in α,ε space
where the multipliers are purely imaginary and are real.

The shaded regions corresponds to the case where the Floquet multipliers are on the unit
disk (stable equilibrium). The unshaded area corresponds to the case where one Floquet
multiplier is outside the unit disk (unstable equilibrium). The boundaries of the shaded
regions correspond to the case where both Floquet multipliers are either +1 or -1.

Figure-4.16 (b) shows several typical locations on the stability map and Figure-4.16 (a)
shows the corresponding location of the Floquet multipliers.

Fig. 4.15 Stability Map for the Mathieu Equation. Figures were created by J. M. Berg using a numer-
ical algorithm in the text ‘Nonlinear Ordinary Differential Equations’ by Jordan and Smith.
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(a) (b)

Fig. 4.16 Figure (a) shows the Locus of the Floquet Multipliers as ε varies for α = 0.1. The corre-
sponding points on the stability map are shown in figure (b)

4.7.1 Parametric Resonance of the Axially Loaded Beam

In this section we re-visit the periodically varying axially loaded beam considered in section-
4.5.2 and investigate the stability of the solutions when the axial compressive load is periodic
and is of the form P(t) = Po−acosωt.

In section-4.5.2 we have seen that that solutions of the can be written as

y(x, t) =
∞

∑
k=1

γk(t)sin
(

kπx
L

)
,

where each γk(t) are the solutions of the equation

d2γk

dt2 +(ω2
k +aµk cosωt)γk = 0,

where

ω
2
k =

k2π2

ρAL2

(
EIk2π2

L2 −Po

)
and µk =

k2π2

ρAL2 . In section-4.7 we have seen that using the variable transformation τ = ωt,

αk =(ωk/ω)2 and εk = aµk/ω2 this equation can be transformed in to the normalized Mathieu
equation

d2γk

dτ2 +(αk + εk cosτ)γk = 0.
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Furthermore we have also seen in section-4.5.2 that the stability of the origin of the system
depends on the parameters (αk,εk) and that the figure-4.15 shows the regions in the (αk,εk)
space for which the origin is stable and not.

Let us see where the system lies in the parameter space (α,ε) for each mode for a given
amplitude of forcing a as the forcing frequency ω varies. We find that

εk

αk
=

a(
EIk2π2

L2 −Po

) = mk.

Thus for a given mode the system lies on the straight-line through the origin in (α,ε) space
with slope mk as ω varies. We also see that As the driving frequency is increased the system
moves along this line towards the origin. We also observe that as k increases the line flattens.
For most cases it is typical that mk are very small.

Observe that the figure-4.15 shows that in particular when αk ≈ 1 and αk ≈ 0.25 the mode
is unstable for all k. When αk ≈ 1 we see that ω ≈ ωk and that this implies the existence of
the well known ordinary resonance conditions. In contrast the fact that the modes becomes
unstable when αk ≈ 0.25 shows that how small the amplitude of forcing may be each mode
becomes unstable for forcing frequencies close to 20 times the natural frequency of the mode.
This phenomena is called parametric resonance.

We also note that when Po = Pcr , EIπ2/L2, ω1 = 0, and hence α1 = 0. Thus the stability
map shows that at this condition for sufficiently small a the first mode is stable. Which implies
that the zeroth mode, the straight configuration, is unstable. The consequence of this is that,
at this critical load, the slightest perturbation to the system causes the beam to buckle. This
phenomena is called buckling.

Let us consider the example of a uniform rod of length 1.5 m, 3 cm diameter that is made-
up of steel with E = 208 GN/m2, and ρ = 7780kg /m3. If the beam is subject to a tensile load
of the form P(t) = (1000− 100cosωt)N, then the first two modes have a natural frequency
of 27.4 Hz and 108.7 Hz. For these modes we verify that see that m1,m2 << 1. The lines are
almost flat and thus the chances of exciting the low frequency parametric resonance is very
low. For this rod in tension we see that parametric resonance occurs around the very high
frequencies of 548 Hz and 2172 Hz.

Let us also consider the case where the axial load is compressive. Let us consider a
compressive load that is about 3% of the buckling load Pcr = EIπ2/L2 = 36.3kN. That is
let P(t) = (1000− 100cosωt). The natural frequency corresponding to the first mode is
ω1 ≈ 26.7 Hz. One finds that in this case also m1,m2 << 1. Thus what one needs to worry
about is the parametric resonance that would occur at the high frequency around 534 Hz.

4.7.2 Stabilization of the Inverted Pendulum with Periodic Vertical Forcing

In the previous section we witnessed how high frequency excitations may destabilize an oth-
erwise stable system. In this section we will see how we may achieve the converse. That is,
use high frequency excitations to stabilize an unstable equilibrium. The example we consider
is the problem of stabilizing the unstable equilibrium of a pendulum.
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Fig. 4.17 A Base Excited Inverted Pendulum.

If the base of a pendulum is externally exited so that y(t) = acosωt the equations of motion
of the system expressed using an angle θ measured from the upward vertical position is

θ̈ +

(
−g

l
+

aω2

l
cosωt

)
sinθ = 0. (4.121)

For small displacements from the unstable vertical equilibrium sinθ ≈ θ and we have the
liberalized system

θ̈ +(α + ε cos t)θ = 0. (4.122)

where we have made a time scaling by ω and have set α = − g
ω2l and ε = a

l . This is the
normalized Mathieu equation we dealt with in the previous section. Since the α are negative
we only need to consider the left half side of the stability map shown in Figure-4.15. Figure-
4.18 shows a portion of this part of the map.

The question we would like to answer is at what base excitation frequency ω will the
vertically unstable equilibrium become stable. From the stability map shown in Figure-4.18
we see that when a/l is small the excitation frequency required for stabilization is very large.
For instance if ε = a/l = 0.2 figure-4.18 shows that the equilibrium is stable only if −α =

g
ω2l < 0.02. Which implies that ω > 10

√
g
2l . Thus if the pendulum is about 10 cm and the

amplitude of base excitation is about 2 cm then one needs an excitation that is greater than 12
Hz.
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Fig. 4.18 Closeup of the Left Half Side of the Stability Map for the Mathieu Equation. Figures were
created by J. M. Berg using a numerical algorithm in the text ‘Nonlinear Ordinary Differential Equa-
tions’ by Jordan and Smith.

4.8 Exercises on Basic Vibration Analysis

Exercise 4.1. Consider the torsional vibration system shown in figure-4.19.

Fig. 4.19 A Tortional Vibration System.

1. Show that for small angular displacements the behavior of θ is given by

θ̈ +2ζ ωnθ̇ +ω
2
n θ = 0,

where ω2
n =K/J0, 2ζ ωn =C/J0. Here J0 is the moment of inertia about the axis of rotation

of the system, K is the torsional stiffness of the rod, and C is the damping co-efficient of
the system.

2. Show that if the damping is low, the response of the system for small initial displacements
and velocities is given by
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θ(t) = e−ζ ωnt

(
θ̇(0)
ωd

cos(ωdt−π/2)+
θ(0)√
1−ζ 2

sin(ωdt +φIC)

)
1(t).

3. Describe the main steps that you would take to experimentally estimate the damping ratio
ζ and the frequency of oscillations ωd of the system.

4. Using the experiment described above estimate the damping ratio and frequency of oscil-
lations of the torsional system in the applied mechanics lab.

5. Using experimental results above estimate the torsional stiffness of the thin rod and calcu-
late the error bounds of your estimate.

6. Validate the accuracy of your results.

Exercise 4.2. Figure 1.42 shows a schematic representation of the Free/Forced vibration ap-
paratus in the applied mechanics lab. The apparatus consists of a beam pivoted at O. A damper
is attached to the point A and a spring is attached to the point B. The other end of the spring,
P, is constrained to move vertically. When the beam is horizontal and the point P has zero
displacement with respect to the reference, that is when θ = 0 and z = 0, the spring is at its
natural length (unstretched or uncompressed). The spring constant is k the damping constant
is C and the moment of inertia of the beam about O is I. Let OA = Lc and OB = Lk. Describe
a suitable experimental procedure to determine the damping constant of the system. State all
assumptions and approximations clearly.

Fig. 4.20 A schematic representation of the Free/Forced Vibration Apparatus in the Applied Mechan-
ics Lab.

Exercise 4.3. Consider the 2-DOF translational system shown in figure-4.21.
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4.3.a Find the natural frequencies of the system.
4.3.b Find the normal modes of vibration and the normalized equations.
4.3.c Analytically find the frequency response of the system.
4.3.d Numerically plot the frequency response of the system using the MATLAB for various

combinations of parameters of the system. The MATLAB function bode in the controls
toolbox may be used for this purpose.

Fig. 4.21 2-DOF Translational Vibratory System

Exercise 4.4. Figure-4.22a shows a schematic of a long rotating shaft mounted on two bear-
ings of damping co-efficient D1 and D2 respectively. The shaft is seen to exhibit a torsional
vibration. Figure-4.22b shows a simplified approximation of the system. Using this approxi-
mation answer the following:

4.4.a Estimate the normal modes of vibration of the shaft.
4.4.b If T (t) = Acos(ωt) find the response of θ2 of the approximated system shown in

figure-4.22b as t becomes very large.

Exercise 4.5. An unbalanced small high speed motor is mounted on a heavy platform that is
connected to the ground through very stiff springs as shown in figure-4.23. The springs are
spaced a distance L away from the center line of the platform and the center of the motor is a
distance L0 away from the center line of the platform. The unbalance distance from the center
of rotation is found to be ε and the mass of the rotor of the motor is found to be m. Assuming
that the stiffness of the springs in the axial direction is much smaller than the stiffness in
the transverse direction. Derive a simplified approximate model for the system and find the
normal modes of vibration.

Exercise 4.6. A blower driven by a motor is mounted on the ground using a vibration isolation
arrangement similar to that shown in figure-4.24. Due to some modifications in the operation
of the system the original blower had to be replaced with a new one with an operating region
between 1000 r.p.m and 2000 r.p.m. The new motor when operated at 990 r. p. m. and 1710 r.
p. m. exhibited violent vibrations. You are required to design a vibration absorber to mitigate
the vibrations. As a first step one would typically analyzes the approximate behavior of the
system and attempt to theoretically predict its behavior.
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Fig. 4.22 Torsional vibration of a long rotating shaft.

Fig. 4.23 An Unbalance motor on a platform.

1. Explain the cause of vibration in the system.
2. Assuming that the motor mass and eccentricities are negligible compared to that of the

blower, the system can be assumed to behave similarly to that of the coupled vibration
setup in the Applied Mechanics lab. For small deflections and velocities the experimental
setup in the lab can be approximately modeled by a lumped parameter system shown in
figure-4.25 where the structural damping in the springs is assumed to be negligible. Show
that for small displacements, and angles the equations of motion of the system are given
by

Mz̈+Kz = F(t),

where
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Fig. 4.24 A Vibration Isolation Mounting of Motor Driving a Blower.

z(t) =

 x(t)

θ(t)

 , F(t) =

 f (t)

c f (t)

 , M =

m 0

0 I

 ,K =

 2k −k(l2− l1)

−k(l2− l1) k(l2
1 + l2

2)

 .

Fig. 4.25 A 2-DOF coupled torsional plus translational system

3. Write down these equations in the form
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z̈+Ωz = M−1F(t),

where

Ω =

 ω2
n1 −(l2

1 + l2
2)µω2

n1

−2µα2ω2
n1 α2ω2

n1

 .
with

ω
2
n1 =

2k
m
, ω

2
n2 =

k(l2
1 + l2

2)

I
, µ =

(l2− l1)
2(l2

1 + l2
2)
, α =

ωn2

ωn1
=

√
m(l2

1 + l2
2)

2I
,

4. State the conditions for the existence of synchronized motion of the system of the form

zm(t) = z̄m cos(ωt +φ),

for some constant 2×2 matrix z̄m = [x̄m θ̄m]
T .

5. Show that there exists two distinct types of synchronized solutions of the form

zm1(t) = z̄m1 cos(ω1t +φ1),

zm2(t) = z̄m2 cos(ω2t +φ2),

where

ω1 = ωn1

(1+α2)−
√

(1+α2)2−4α2(1−2µ2(l2
1 + l2

2))

2


1
2

,

ω2 = ωn1

(1+α2)+
√
(1+α2)2−4α2(1−2µ2(l2

1 + l2
2))

2


1
2

,

and z̄m1 = [x̄m1 θ̄m2]
T and z̄m2 = [x̄m2 θ̄m2]

T are the eigenvectors corresponding to the
eigenvalues ω2

1 and ω2
2 respectively while φ1 and φ2 are arbitrary constants.

6. Show that

x̄m1

θ̄m1
=

α2−1+
√
(1+α2)2−4α2(1−2µ2(l2

1 + l2
2))

4µα2 ,

x̄m2

θ̄m2
=

α2−1−
√
(1+α2)2−4α2(1−2µ2(l2

1 + l2
2))

4µα2 .

or alternatively

x̄m1

θ̄m1
=

2(l2
1 + l2

2)µ

1−α2 +
√
(1+α2)2−4α2(1−2µ2(l2

1 + l2
2))

,

x̄m2

θ̄m2
=

2(l2
1 + l2

2)µ

1−α2−
√
(1+α2)2−4α2(1−2µ2(l2

1 + l2
2))

.
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7. Describe the qualitative behavior of the two modes of vibration.
8. Discuss the case if the blower is mounted very close to the middle of the platform.
9. The mass of the motor is fairly accurately known. However due to the use over time the

spring constants of the mounts are poorly known. Describe a method that you would use
to estimate the spring constant of the mount.

10. Describe how you would validate the estimate of the spring constants.
11. Estimate the spring constant of the coupled 2DOF vibratory system in the lab and discuss

the validity of your estimate.

Exercise 4.7. A motor that weighs 200 kg is mounted on the floor using a stiff platform of
overall stiffness estimated to be 80 kN/m. The unbalances in the rotor induces a periodic
forcing on the platform. The operating conditions of the motor are between 60 r.p.m. and
300 r.p.m. Design a tuned mass damper for the system. State clearly all assumptions and
approximations made.

Exercise 4.8. Consider the 3-DOF translational vibratory system shown in figure-4.26. If k1 =
k2 = k3 = k and C1 =C2 =C3 =C find the initial condition response of the system when only
the first mass is given an initial displacement of x10.

Fig. 4.26 A 3-DOF translational vibratory system

Exercise 4.9. Find the modes of vibration of the 3-DOF translational vibratory system shown
in figure-4.27. Comment on the form of the each mode of vibration.

Fig. 4.27 A 3-DOF translational vibratory system

Exercise 4.10. Find the resonance frequencies of the 3-DOF translational vibratory system
shown in figure-4.28. Assuming zero initial conditions find the response of the system when
z(t) = 1(t) the unit step function.
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Fig. 4.28 A 3-DOF translational vibratory system

Exercise 4.11. A uniform shaft of 9.52 mm diameter is supported in ball bearings and carries
four discs A, B, C, D. The bearings are placed close to the discs, so that the sag of the shaft
is reduced to a minimum. The wheel A carries a small spindle which is supported in ball
bearings. The spindle carries an out-of balance mass and is belt driven by a variable speed DC
motor. A schematic of the setup is shown in figure-4.29. Answer the following with detailed
justification:

Fig. 4.29 A Multi-Rotor Vibratory System

1. Assuming that the damping in the system is negligible, show that for small angular dis-
placements the equations of motion of the system are given by

Iθ̈ +Kθ = T (t),

where
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θ(t) =



θ1(t)

θ2(t)

θ3(t)

θ4(t)


, T (t) =



f (t)

0

0

0


,

I =



I1 0 0 0

0 I2 0 0

0 0 I3 0

0 0 0 I4


,K =



k1 −k1 0 0

−k1 (k1 + k2) −k2 0

0 −k2 (k2 + k3) −k3

0 0 −k3 (k3 + k4)


.

2. Write down these equations in the form

θ̈ +Ωθ = M−1F(t),

where

Ω =



ω2
n1 −ω2

n1 0 0

−µ1ω2
n1 (µ1ω2

n1 +ω2
n2) −ω2

n2 0

0 −µ2ω2
n2 (µ2ω2

n2 +ω2
n3) −ω2

n3

0 0 −µ3ω2
n3 (µ3ω2

n3 +ω2
n4)


.

with
ω

2
n1 =

k1

I1
, ω

2
n2 =

k2

I2
, ω

2
n3 =

k3

I3
, ω

2
n4 =

k4

I4
,

µ1 =
I1

I2
, µ2 =

I2

I3
, µ3 =

I3

I4
,

3. For the unforced undamped system, state the conditions for the existence of synchronized
motion of the form

θm(t) = z̄m cos(ωt +φ),

for some constant 4×1 matrix θ̄m = [θ̄1m θ̄2m θ̄3m θ̄4m]
T .

4. Find the modes of vibration of the system.
5. Qualitatively describe the behavior of each of the modes of vibration.

Exercise 4.12. Consider the cantilevered beam shown in figure-4.30. The deflection of the
beam is modeled by the Euler’s beam equaion

∂ 2y
∂ t2 +

EI
ρA

∂ 4y
∂x4 = q(x, t)
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Fig. 4.30 A Cantilevered Beam

Find the modes of vibration of the cantilevered beam and sketch the first three modes of
vibration.

Exercise 4.13.
The transverse deflection of unforced rotating shafts can be approximately modeled by

∂ 2y
∂ t2 +

EI
ρA

∂ 4y
∂x4 −

EI
κGA

∂ 4y
∂ t2∂x2 = 0.

The shaft is simply supported at the ends and hence satisfy the boundary conditions

y(0, t) = 0, y(L, t) = 0,

∂ 2y
∂x2 (0, t) = 0,

∂ 2y
∂x2 (L, t) = 0,

Find the modes of vibration and the general solution of the system.

Exercise 4.14. Consider the vibration of a thin circular membrane such as in the case of a
drum. The deflection of the membrane of such a rotationally symmetric system is most con-
veniently described using polar coordinates (r,θ). That is consider the deflection of the mem-
brane to be a function of (t,r,θ). Expressing the wave equation in polar coordinates, one finds
that the deflection of the membrane satisfies

∂ 2y
∂ t2 − c2

(
∂ 2y
∂ r2 +

1
r

∂y
∂ r

+
1
r2

∂ 2y
∂θ 2

)
= 0,

and the boundary conditions u(t,r0,θ) = 0. Find the modes of vibrations.
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