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Chapter 1
Galilean Mechanics

Fig. 1.1 Galileo Galilei — 15 February 1564 to 8 January 1642: Figure curtesy of Wikipedia.

Mechanics deals with the scientific description of the world as we perceive it. The human
infatuation with the subject pre-dates written history and has given rise to the well accepted
customary approach of searching for scientific laws, in the form of mathematical expressions,
to describe and generalize naturally observed phenomena. The sole test of the “truth” of such
laws was (and still is) experiment. Typically one would imagine, conceptualize and arrive at
mathematical expressions to describe and generalize observed phenomena and then devise
experiments to verify their validity. They are considered to be true as long as there are no ex-
periments that contradict them. Such laws may fail to be “true” by virtue of such experiments
being inaccurate. Accuracy depends on precision. Up until the 20th century, Galilean mechan-
ics (or what is popularly known as Newtonian mechnics1) and Maxwell’s electromagnetism
were found to accurately describe the phenomena of nature observed to within the precision
allowed by the instruments of that time. As technology developed it became possible, around

1 Galileo Galilei’s contribution to the formulation of the laws as stated by Newton is monumental.
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the start of the 20th century, to conduct experiments and observe nature with increasingly high
precision. Scientists started observing phenomena that were not quite accurately described by
Newton’s laws and Maxwell’s laws. Inaccuracies were observed, when Galilean principles
were used to describe the motion of atomistic and sub-atomistic particles, such as electrons,
moving close to the speed of light. The attempt to accurately describe, the motion of objects
that move close to the speed of light gave birth to Einstein’s relativistic mechanics, while the
attempt to accurately describe the motion of microscopic particles gave birth to quantum me-
chanics. To this date no experiments nor observations have contradicted the validity of these
two scientific principles. Einstein extended his theory of relativity to incorporate gravitational
interaction between objects and termed it the theory of general relativity. The theory of special
relativity, Maxwell’s electro-magnetism, and quantum mechanics have been combined into
one single framework called quantum field theory while the unification of Einstein’s general
relativity and quantum mechanics remains an open challenge that prevents the formulation of
one single principle (a theory of everything) that could explain all observed phenomena.

The objects of motion that we encounter in most of our Engineering practice are much
larger than microscopic objects and move at speeds much slower than the speed of light. The
motion of such objects are sufficiently accurately described by Galilean mechanics. Galilean
mechanics rests on the belief that all objects are made of impenetrable interacting particles
of matter and that only one thing can be at a given place at a given time instant [1]. This
notion requires the acceptance of the fundamental concept that all observers agree that time
is; independent of space, one-dimensional, continuous, isotropic, and homogeneous and that
space is; three-dimensional, continuous, isotropic, and homogeneous. The notion of time is
related to memory. Memory allows one to prescribe a sequence of events. The duration be-
tween events is measured by time. Since events are related to motion, so is time, and hence
motion is essential to the definition of time. We measure time by comparing motions. In clas-
sical mechanics the best way to look at space and time is as tools that allow one to describe
the relation between objects and hence motion.

The aim of mechanics is to describe the relation between objects using the language of
mathematics. Transforming the observations into a mathematical expression involving num-
bers requires measurements. Measurements depend on the measuring system or in other words
the observer. Since motion is believed to be universal the laws that govern nature should also
be observer independent. Thus mechanics can be considered to be the search and study of the
scientific laws of motion in the form of mathematical expressions that are observer indepen-
dent. This means that half of the problem lies in figuring out the capabilities each observer has
and the measurements and observations that different observers can agree upon. Properties and
concepts that every observer can agree upon are called observer invariant or simply intrinsic.
Below we will explore these notions that will eventually help us mathematically describe the
motion of everyday observed objects. This study is what is called Galilean mechanics.

The application of the Galilean laws of mechanics is generally divided into three branches
depending on the type of objects under consideration; rigid-body mechanics, deformable-body
mechanics and fluid mechanics. In these notes we will concentrate on learning the basics of
rigid-body mechanics. The study of rigid-body mechanics begins with describing the motion
of a single particle of matter. A general rigid body is considered to consist of a large number
of such particles where the distance between each of the particles remain fixed. The geometric
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description of the motion of these objects is what is generally known as Kinematics while the
study of the cause of motion is referred to as Kinetics. We will explore these ideas a bit more
closely in the following sections.

1.1 Fundamental Laws of Galilean Mechanics

Describing the motion of a particle depends on the measurements that an observer makes
(quantitative observations). We will say that a particular measuring system represents an ob-
server. In general, different measurement systems will yield different descriptions of the mo-
tion. For example a particle that appears to be fixed with respect to one observer will appear
to be moving for another observer that is moving with respect to the first one. Thus in general
the description of position of a given particle depends on the observer. A natural question that
arises is the following: do there exists notions and properties of nature that do not depend on
the observer? If so what are they?

1.1.1 Inertial Observers

Our general experience is that motion appears to be continuous, direction independent, and
the same every where on earth. We will take this as to be true. That is we assume that

Axiom 1.1 Fundamental Assumptions of Galilean Space-Time: There exists a class
of observers called inertial observers who agree that

(i) time is independent of space,
(ii) time is one dimensional, continuous, isotropic, homogeneous, and the difference in

time between any two particular ‘instants’ is the same,
(iii) space is three dimensional, continuous, isotropic, homogeneous, and the distance

between any two particular ‘points’ in space is the same.

Galilean mechanics rests upon these assumptions and hold true as long as they remain valid.
These fundamental assumptions about classical space-time are in fact assumptions about the
measuring systems the observers have. First of these assumptions imply that there exists iner-
tial observer independent units for the measurement of time or in other words that a universal
clock exists. The second of the above assumptions implies that the notion of distance is inertial
observer independent and hence that straight lines, parallel lines, and perpendicular lines in
space can be defined in an inertial observer independent manner. A space where these notions
hold is called an Euclidean space2.

2 A space where Euclidean geometry holds.
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Thus the above Axiom supposes that there exists observers, referred to as inertial ob-
servers, who see that time is universal and that the space we live in is Euclidean.

Fig. 1.2 The representation of point in space using an orthonormal frame e.

Below we will explore further the consequences of this assumption. Let e denote an inertial
observer. The observer e can describe a point P in the 3D space that we live in by picking a
point O in space and setting three mutually perpendicular unit length axis3 at O. The basic
assumption that space is isotropic and homogeneous allows us to pick any arbitrary point and
any such mutually perpendicular axis. Such a set of axis is called an ortho-normal frame of
reference. Labelling the axis e1,e2,e3 to give a right handed orientation we can symbolically
represent the frame as a row matrix e = [e1 e2 e3] where the e1,e2 and e3 are to be taken as
symbols and nothing more. In this note we will always assume that the orthonormal frames
are right hand oriented. Notice that with abuse of notation we have used e to denote the frame
that corresponds to the observer e. Using such a frame, any point P in 3D-Euclidean space can
be uniquely described using only the three measurements (numbers) x1,x2 and x3. These three
numbers describe respectively the distance to the point along the e1,e2, and e3 directions as
shown in figure 1.2. Conversely the assumption that 3D-Euclidean space is continuous implies
that any ordered triple of real numbers (x1,x2,x3)∈R3 can be used to represent a unique point
in 3D-Euclidean space. Symbolically we describe this identification as

OP , x1e1 + x2e2 + x3e3 =
[

e1 e2 e3
]︸ ︷︷ ︸

e

x1
x2
x3


︸ ︷︷ ︸

x

= ex.

In these notes the matrix
3 Show that this can be done since e sees space to be Euclidean.
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x =

x1
x2
x3

 ,
will be referred to as the Euclidean representation matrix, or simply the representation, of the
position of the point P with respect to the frame e. The components (x1,x2,x3) ∈ R3 will be
referred to as the position components of P, or the Euclidean coordinates of P with respect to
e and again with a bit of abuse of notation we will also denote this ordered triple by the same
symbol, x, that denotes it matrix counterpart given above. We will use the terms measurement
system, frame, coordinates, and observer to mean the same thing.

Consider two points P and Q in 3D-Euclidean space with Euclidean coordinates x ,
(x1,x2,x3) ∈ R3 and y , (y1,y2,y3) ∈ R3 respectively with respect to some frame e. Recall
that the standard inner product in R3 is defined by

<< x , y >>, x1y1 + x2y2 + x3y3.

Then, by virtue of the Pythagorean theorem for 3D-Euclidean space, one sees that the mea-
sured distance between the two points P and Q, in 3D-Euclidean space is equal to

d(P,Q), ||x− y||=
√
<< (x− y) , (x− y)>>=

√
(x1− y1)2 +(x2− y2)2 +(x3− y3)2.

(1.1)

Using the inner product we can also define the angle between the lines OP and OQ by the
relationship

θ , cos−1
(
<< x , y >>

||x|| · ||y||

)
.

Thus we see that the fundamental assumptions of classical space-time imply that an iner-
tial observer can construct an orthonormal frame in space and use it as its measurement
system to define distances between points in space in such a way that all inertial observers
will agree upon this measurement. In other words for every inertial observer there exists
a globally defined coordinate system for space such that the distance between any two
points with coordinates, x , (x1,x2,x3) ∈ R3 and y , (y1,y2,y3) ∈ R3, is given by (1.1).

The construction of the orthonormal frame and the use of the clock allows an observer e
to assign the ordered quadruple (t,x) ∈ R4 where t ∈ R and x ∈ R3 to a space-time event
in a unique way. A different measurement system, e′ may provide a different identification
(τ,ξ ) ∈ R4 where τ ∈ R and ξ ∈ R3. When comparing the motion described by the two
observers we need to know how the two representations (coordinates) are related to each
other. That is we must find the functions τ(t,x) and ξ (t,x). The homogeneity assumption of
space-time implies that τ(t1 +T,x1 +a)− τ(t2 +T,x2 +a) = τ(t1,x1)− τ(t2,x2), and ξ (t1 +
T,x1+a)−ξ (t2+T,x2+a)= ξ (t1,x1)−ξ (t2,x2) for all a,T and t1, t2,x1,x2. This implies that
necessarily τ = a+bt + cx and ξ = γ +β t +Rx where c,γ,β ∈ R3 and a,b ∈ R are constant
and R is a 3×3 constant matrix4.
4 Showing this only requires the knowledge of partial derivatives.
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The assumption that time is independent of space implies that c = 0 and the assumption
that all inertial observers see the same intervals of time means that necessarily b = 1 and
hence that τ = t + a. Hence all inertial observers measure time up to an ambiguity of an
additive constant and thus without loss of generality we may assume that all observers have
synchronized their clocks and hence that a = 0. This also implies that a universal clock exists.
Furthermore the assumption that space intervals are inertial observer independent implies
that, ||ξ (t,x1)− ξ (t,x2)|| = ||x1− x2||. Thus ||R(x1− x2)|| = ||x1− x2|| for all x1,x2. Thus
necessarily R must be an orthogonal5 constant transformation. Since the space is observed
to be homogeneous by all inertial observers without loss of generality we may choose γ = 0
6. Thus we see that the representation of the same space-time event by two different inertial
observers are related by (τ,ξ ) = (t,β t +Rx). You are asked to complete the details of these
arguments in exercise-3.1.

Since in the following sections we will see that the orthonormal frames are related to each
by such an orthogonal transformation it follows from ξ = Rx that the frame used by e′ to make
spatial measurements is also an orthonormal frame. Let O′ be the origin of the orthonormal
frame used by e′. If the space-time event O′ has the representation (t,o) according to the
observer e, it has the representation (t,β t +Ro) = (t,0) according to the observer e′. Thus we
have that β =−Rȯ=−Rv where v= ȯ and hence that the velocity of the center of the e′ frame
with respect to the e frame, given by v = ȯ = −RT β , must be a constant. That is we see that
all inertial observers must necessarily translate at constant speed with respect to each other
without rotation. This also shows that the representation of a space-time event denoted by
(t,x) according to e must necessarily have the representation (t,R(x− vt)) for some constant
v∈R3 according to any other inertial frame e′. Space is homogeneous only for such observers.
In particular we can see that this is not the case for observers rotating with respect to an inertial
observer e. That is a rotating observer will not observe space to be homogeneous7. Since R
is a constant, without loss of generality, one can always pick the orthonormal frame used by
e′ to be parallel to the one used by e so that R = I3×3. Then we see that ξ (t) = x(t)− vt in
parallel translating inertial frames. It is traditional to refer to parallel frames that translate at
constant velocities with respect to each other as inertial frames.

In summary Axiom-1.1 implies that there exists a special class of observers called inertial
observers who see that time is a universal quantity and that a special class of spatial coor-
dinates called Euclidean coordinates for 3D-space exists such that the distance between
any two points in space is given by (1.1) in an inertial observer independent manner.
From a physical point of view it follows that any two such observers must necessarily be
moving with constant relative velocity with respect to each other without rotation.

5 A matrix that satisfies the properties RT R = RRT = I is called an orthogonal transformation.
6 Note that choosing γ = 0 amounts to assuming that the origin of the spatial frames of both observers
coincide at the time instant t = 0 and does not sacrifice any generality since the space is homogeneous
we can parallel translate the frames until they coincide at the time instant t = 0.
7 Show that this is true.
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1.1.2 Description of Motion

Fig. 1.3 The Velocity of a Particle described with respect to a frame e.

Consider a particle moving in 3D-Euclidean space. We have seen that the position P(t) of
the particle at a given time t can be expressed by the Euclidean representation matrix x(t)
with respect to some orthonormal frame e. Since the position of the particle is changing with
time, x(t) is a function of time and describes a curve in R3 that is parameterized by time t.
The velocity of a point P is always defined with respect to an orthonormal reference frame.
Specifically with respect to the e frame it is defined to be the infinitesimal change of position
with respect to e. That is

ẋ(t), lim
δ t→0

x(t +δ t)− x(t)
δ t

=

 ẋ1
ẋ2
ẋ3

 .
Observe that by definition ẋ(t) gives the tangent to the curve at P(t) (Refer to figure 1.3). The
components

ẋi(t) = lim
δ t→0

xi(t +δ t)− xi(t)
δ t

i = 1,2,3

represent the infinitesimal change of position in the ei direction. Thus the correct way to
visualize ẋ(t) is to consider it as the description of a point in a frame that is parallel to e but
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with origin at P(t) (Refer to figure 1.3) or alternatively as arrows at P(t). The magnitude of
the velocity in the e frame is defined to be

v , ||ẋ||=
√

ẋ2
1 + ẋ2

2 + ẋ2
3.

The acceleration of a particle is also defined in terms of orthonormal frames. In an orthonor-
mal frame e it is defined to be the infinitesimal change of velocity in the e frame,

ẍ(t), lim
δ t→0

ẋ(t +δ t)− ẋ(t)
δ t

=

 ẍ1
ẍ2
ẍ3

 .
Animals have inbuilt sensors that allow them to measure accelerations. For example, the hu-
man ear contains accelerometers that allow them to sense the direction of the gravitational
accelerations. It is interesting to note that animals can not sense absolute velocities and thus
can not distinguish between being at rest or being in constant velocity motion.

Consider a certain space-time event A and let e and e′ be two inertial observers with parallel
frames. Let (t,x) ∈ R4 and (τ,ξ ) ∈ R4 be the representation of the space-time event A made
by e and e′ respectively. Since all inertial observers agree that space-time is homogeneous
we saw previously that the two representations are related by τ = t and that ξ = x− vt for
some constant v ∈ R3. Thus the representation of the velocity of a particle in the two frames
are related by ξ̇ = ẋ− v and the acceleration of a particle in the two frames are related by
ξ̈ = ẍ. Therefore we see that if a particular observer, e, sees that an object is moving at a
certan acceleration then all parallel inertial observers with respect to e will also observe that
the object is moving at that same acceleration. This allows us to conclude that even though
the position and velocity of a particle are not the same for all inertial observers with parallel
frames the acceleration of a particle is observed to be the same for all inertial observers with
parallel frames. Hence we can conclude the following:

The isotropy, homogeneity, and continuity of space-time imply that the acceleration of a
particle is an parallel translating inertial observer independent quantity. That is, if we rep-
resent the motion of a particle using any inertial coordinate system with parallel frames
the acceleration computed in all of these frames will be the same.

1.1.3 The Apparent Cause of Change of Motion

Kinetics deal with the apparent causes of motion. Galileo Galilei in the 17th century made
the observation that a person doing experiments, with moving objects, below the deck in a
ship traveling at constant velocity, without rocking, on a smooth sea; would not be able to
tell whether the ship was moving or was stationary8. Thus he concluded that laws of nature
8 It is interesting to note that animals can only feel accelerations and not absolute velocities. Thus one
could not differentiate between being in a ship moving at constant velocity and being in a ship at rest.
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that describe the motion of objects must be the same in all inertial frames. At the end of the
previous section we have seen that acceleration of a given particle is seen to be the same for
all inertial observers with parallel frames. Therefore, in order to be the same in all inertial
frames, the laws of nature that govern particle motion must necessarily depend only on the
acceleration.

Based on experiments, involving colliding rolling balls on a smooth horizontal surface,
it was observed that objects generally tend to move at constant velocities or remain at rest
unless brought into interaction with other objects. This idea was generalized by Galileo in his
principle of inertia where he stated that, all inertial observers will see that, an object that does
not interact with any other object will move at a constant speed or will remain at rest9. Thus
for an isolated matter particle we would have that ẍ = 0 in any and every inertial frame and
thus that it is an invariant property observed by all inertial observers. This also means that all
inertial observers will agree that an isolated matter particle is either at rest or is moving in a
straight line. It was also observed that there was a certain resistance to change in this steady
motion and that this resistance depended on the amount of matter present in the object. Bigger
objects would tend to change its motion slower than smaller objects that were made of the
same material. The measure of the degree of this resistance to change in motion is referred to
as the inertia of the object. Careful experiments with two colliding balls on a smooth surface
indicated that a unique number can be ascribed to each ball such that if for each ball you
multiply this number with the velocity of the ball, and added the results together, this sum
will always remain a constant irrespective of whether they collide or not. It is easy to see that
all inertial observers will also agree on this statement even though the constant they obtain
will be different. Thinking of interacting particles, Galileo hypothesised that this number that
multiplies the velocity of the particle was the same for all inertial observers and must be an
intrinsic property of the object. This is one of the crucial assumptions of Galilean mechanics:

Axiom 1.2 The Principle of Conservation of Linear Momentum: Assume that there
exists an inertial observer independent unique property called mass that can be assigned
to each and every particle in the Universe and that all particles interact with each other.
Define linear momentum of a particle in an inertial frame to be the mass times velocity
of the particle in the inertial frame. An isolated set of particles interact with each other
in such a way that the total sum of the linear momentum of the set of particles always
remains constant when observed in any inertial frame.

The assumptions on classical space-time stated in Axiom-1.1 along with the above principle
of conservation of linear momentum are the fundamental principles (laws) on which Galilean
mechanics is founded upon.

Let us investigate what, additional information, the principle of conservation of linear mo-
mentum gives us about a system of interacting but isolated set of particles P1,P2, · · · ,Pn. That
is, a set of particles that interact with themselves but do not interact with any other particles

9 Newton’s First law.
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of the universe. This is an idealization of a real situation where the external interactions are
much weaker compared to the internal ones. Let mi be the mass of Pi and ẋi be the velocity
of Pi in some inertial frame e. Then the conservation of linear momentum in e gives us that
∑

n
i=1 miẋi = constant. The principle of conservation of linear momentum says that in a differ-

ent inertial frame e′ this quantity still remains constant as well. However in general the two
constants will not be the same. That is, although two observers in two different inertial frames
will agree that the total linear momentum of the system of particles is conserved, in general
they will measure two different values for this constant. Thus though conservation of linear
momentum is inertial frame invariant, the total linear momentum is not.

Differentiating the expression ∑
n
i=1 miẋi = constant one sees that in the e-frame

n

∑
i=1

miẍi = 0. (1.2)

Observe that now all inertial observers will agree that this sum is equal to zero. The expres-
sion (1.2) implies that an isolated particle (n = 1) will move at constant velocity in any inertial
frame (Galileo’s principle of inertia or what is commonly known as Newton’s 1st law of mo-
tion). The above sum can be re-arranged to give

m jẍ j =−
n

∑
i=1
i6= j

miẍi.

This says that the mass times the acceleration of the jth particle is not free but is constrained
due to the interaction it has with the rest of the particles. This constraint imposed on the mass
times the acceleration of the jth particle is defined to be the force acting on the jth particle and
in this case is given by f j = −∑

n
i=1
i 6= j

miẍi. Then the above expression gives m jẍ j = f j. This is

nothing but the statement of Newton’s 2nd law of motion. This also shows that forces observed
is the same in all inertial frames. Considering two interacting particles (1.2) also shows that
mutual particle interactions are equal and opposite (Newton’s 3rd law of motion). Thus we
see that the three Laws of Newton are a direct consequence of the principle of conservation
of linear momentum in inertial frames. However note that it does not tell us that the mutual
interaction between two particles must lie in the direction of the line joining the two particles.
Nevertheless from a macroscopic point of view it is an empirically observed fact that this in
fact is true and will be taken as a separate hypothesis of the nature of force:

Axiom 1.3 Assume that, taken pairwise, mutual particle interaction forces act along the
straight line that joins the two particles.

We will see later that this assumption is crucial in ensuring that a quantity known as angular
momentum of a set of isolated but interacting set of particles be conserved. Therefore one may
replace this hypothesis with the equivalent hypothesis that the particles interact in such a way
that the total angular momentum of the universe is conserved.
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The quantity, force, that effects a change in the motion of a particle thus is a consequence
of its interaction with other particles such that the total linear momentum of all the interacting
particles remain constant in any inertial frame. Four types of fundamental particle interactions
have been observed so far. They are the strong (nuclear), electro-magnetic, electro-weak, and
gravitational interactions. When taken pairwise these interactions are assumed to act along
the line joining the two interacting particles. Since we have seen that particle accelerations are
inertial observer invariant so are these forces. The change of motion that a matter particle or
an object undergoes is due to the manifestation of one or many of these interactions.

All experiments conducted verified the principle of conservation of linear momentum and
the resulting Newton’s laws up until the end of the 19th century to the precision allowed by
the instruments of that day. Towards the end of the 19th century and around the early period
of the 20th century the advances in technology brought about by the development of Galilean
mechanics and the Maxwell’s laws of electro-magnetism made it possible to observe and
measure phenomena at very small time and length scales and at much faster speeds and larger
distances. This capability began to unearth certain phenomena; regarding objects that were
very small and that moved very close to the speed of light, and at the same time about the mo-
tion of very large objects that were very far from earth, that could not be described accurately
by the afore referred Galilean laws of motion. The search to explain these phenomena gave
birth to Einstein’s principle of relativity and to the principles of quantum mechanics. Most of
the objects of motion that we are interested in Engineering are macroscopic bodies (that is
much larger than the afore referred microscopic objects), moving at speeds far less than the
speed of light. It still remains valid that Galilean laws of mechanics predict the behavior of
such objects to a sufficiently high degree of precision compared to the size and speed of the
objects.

In summary the fundamental notions on which Galilean mechanics is founded upon are:

i. objects are made up of impenetrable particles that interact with each other in an ob-
server independent manner,

ii. when taken pairwise particles interactions lie along the straight line that joins the two
particles,

iii. there exists a class of observers called inertial observers who agree that space is 3D
and Eulcledian, and that time is 1D and universal,

iv. associated with each particle there exists an inertial observer independent quantity
called mass,

v. the total linear momentum of all the particles in the Universe is always conserved
when viewed in any inertial frame.

Based on these it can be deduced that all particles interact in a manner that is indepen-
dent of the inertial frame of reference and these interactions are the causes of change in
motion. The change in motion of a particle in any given inertial frame e is described by
the mathematical expression

mẍ = f (t), (1.3)
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where f (t) is defined to be the force acting on the particle that arises due to its interaction
with the rest of the particles in the universe and m is the observer invariant property of
the particle called mass.

It is interesting to note, according to the expression (1.3), that measuring accelerations al-
lows one to measure forces. Even though they can be theoretically estimated using the knowl-
edge of the fundamental interactions of particles, it turns out that this is the only way we
can measure forces. Thus the above expression, if you may, can be taken to be the definition
of force. Since the knowledge of the fundamental interactions allow us to estimate forces,
equation (1.3) can be used to predict the motion of the point particle. That is what is mon-
umental about this law. From a mathematical perspective equation (1.3) describes a second
order differential equation and solving it for x(t) requires the knowledge of the initial condi-
tions x(t0) = x0 and ẋ(t0) = v0 and therefore in order to predict the motion of a particle what
one needs is the knowledge of the initial state, x(t0) = x0 and ẋ(t0) = v0, and the knowledge
of the force, f (t), at all times, t.

Example 1.1. Consider the problem of a horizontal spring with one end fixed to a support and
the other end fixed to an object, of mass m, that moves on a smooth horizontal table. We
assume that the object is symmetric and small so that we can approximate it as a point particle
with mass m. If we give an initial horizontal displacement to the object we know empirically
that the object will exhibit a simple harmonic motion if the air and other resistances on the
object are negligible and the motion is small. That is, if x(t) is the displacement of the object
from the un-stretched position and if the air resistance on the object is negligible and the
motion is small, the position x(t) of the object P at a given time t is described sufficiently
accurately by the second order differential equation

mẍ(t) =−k x(t).

Observing this expression it is evident that the mass times the acceleration of the object is
constrained and is equal to −k x(t). Thus we could call −k x(t) the force exerted on the object
due to its collective interaction with all the particles that makeup the spring10. Considering
the fact that a spring is made of atoms that interact in a manner where they repulse each other
when they are too close and attract when they are sufficiently away11 we may also theoretically
estimate this law. These are the two fundamental ways in which forces are determined in
practice.

1.1.4 The Motion of a Set of Interacting Particles

In this section we will investigate the additional consequences of the law of conservation of
linear momentum has on the motion of a set of particles P1,P2, · · · ,Pn. For example this could
10 This is known as the Hooke’s law.
11 This arises due to the electro-magnetic interactions due to the electrons and protons that makeup the
particle.
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be a body of fluid particles (a deformable body) or a body of particles rigidly fixed with respect
to each other (a rigid body).

Let us begin by consider the description of the motion of a single particle Pi of mass mi in
an inertial frame e with origin O. Denote by xi and ẋi its position and velocity respectively in
the inertial frame e. By definition the linear momentum of particle i in the inertial frame e is
pi , miẋi.

From (1.3) we see that
ṗi = fi,

where fi is the force acting on the particle due to its interaction with all the other particles
in the universe. This expression states that the rate of change of linear momentum of a
particle in an inertial frame is equal to the force acting on the particle. This is as an
equivalent statement of Newton’s second law.

The law of conservation of momentum tells us that the total linear momentum of a col-
lection of interacting but otherwise isolated set of particles P1,P2, · · · ,Pn is conserved in any
inertial frame e. That is in particular

p ,
n

∑
i=1

pi =
n

∑
i=1

miẋi = constant.

When there are other external influences on the set of particles the total linear momentum
of the set of particles is not conserved. To see this we will split the interaction force that the
ith particle experiences as

fi = f e
i +

n

∑
j 6=i

fi j

where fi j is the force on i due to its interaction with j. Note that since particle interactions are
equal and opposite we have that the interaction of j on i denoted by fi j is equal and opposite
to the interaction of i on j denoted by f ji. That is fi j =− f ji. Hence we have that

n

∑
i=1

fi =
n

∑
i=1

f e
i +

n

∑
i=1

n

∑
j 6=i

fi j =
n

∑
i=1

f e
i , f e

where f e represents the total resultant of the external interactions acting on the set of particles
P1,P2, · · · ,Pn. Thus we have ṗ = f e. This also implies the following. Let x̄ be the representa-
tion of the center of mass Oc of the particles in the e frame. That is let

x̄ ,
∑

n
i=1 mixi

∑
n
i=1 mi

. (1.4)

Defining M , ∑
n
i=1 mi and differentiating this we get M ˙̄x = ∑

n
i=1 miẋi = p and differentiating

again we get M ¨̄x = f e. This only describes the center of mass motion of the set of particles
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and not the motion that is relative to the center of mass that we clearly observe for instance
with rigid body motion in space. In order to capture this motion the notion of the rotational
ability of a particle at Pi about a point O′ in space is defined as follows. Let OO′ = eo.

The angular momentum of a particle Pi in the e frame about the point O′ (fixed or other-
wise) is defined to be

πi , (xi−o)×miẋi. (1.5)

Differentiating this we have

π̇i = (ẋi− ȯ)×miẋi +(xi−o)×miẍi =−ȯ×miẋi +(xi−o)× fi. (1.6)

The quantity

τi , (xi−o)× fi, (1.7)

is defined to be the moment of the force about O′. Combining this with (1.6) we have

π̇i =−ȯ×miẋi + τi. (1.8)

Recall that since the force acting on a particle is due to its interaction with the particles
under consideration and the rest of the particles in the universe we have fi = f e

i +∑
n
j 6=i fi j.

Since f ji =− fi j and they lie along the straight line joining the two particles we also have that
(xi−o)× fi j =−(x j−o)× f ji which implies that

n

∑
i=1

τi =
n

∑
i=1

(xi−o)× fi =
n

∑
i=1

(xi−o)× f e
i +

n

∑
i=1

n

∑
j 6=i

(xi−o)× fi j =
n

∑
i=1

(xi−o)× f e
i .

We will define the quantity

τ
e ,

n

∑
i=1

(xi−o)× f e
i .

to be the total moment of the external forces acting about the point O′. Thus the rate of change
of total angular momentum π = ∑

n
i=1 πi about a point O′ is

π̇ =
n

∑
i=1

π̇i =−ȯ×
n

∑
i=1

miẋi +
n

∑
i=1

n

∑
j 6=i

(xi−o)× fi j +
n

∑
i=1

(xi−o)× f e
i ,

=−ȯ×
n

∑
i=1

miẋi + τe =−Mȯ× ˙̄x+ τe.
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This expression tells us that π̇ = τe if ȯ = 0 or if ˙̄x = 0 or if O′ = Oc. However note that
ȯ = 0 or ˙̄x = 0 are conditions that not all inertial observers will agree upon. Thus we have the
following conclusion that all inertial observers will agree upon: the total angular momentum
of a set of interacting but otherwise isolated set of particles about the center of mass of the set
of particles remain constant when observed in any inertial frame. Notice that the assumption
that pairwise particle interactions that lie along a straight line that joins the two particles was
crucial for this conclusion. Thus one may replace that assumption with the sometimes more
widely used assumption that total angular momentum of the universe is conserved.

In summary, what we have seen is that, in general if P1,P2, · · · ,Pn are a set of particles that
are interacting with themselves and the rest of the universe, then the law of conservation
of linear momentum of the universe along with the assumption that pairwise particle
interactions lie along the straight line joining the two particles imply that:

(a) the rate of change of total momentum of the set of particles is equal to the total
resultant of the external forces acting on the system of particles. That is

ṗ = f e. (1.9)

(b) the set of particles move in such a way that its center of mass moves according to
the motion of a particle of mass M = ∑

n
i=1 mi that is under the influence of the force

f e = ∑
n
i=1 f e

i . That is

M ¨̄x = f e. (1.10)

(c) the rate of change of the total angular momentum of the system of particles about its
center of mass is equal to the total resultant of the moments of the external forces
acting on the system. That is

π̇ = τ
e. (1.11)

We emphasize that these conclusions are valid for any collection of particles such as in
a deformable body or a rigid body. A straight forward corollary of (1.10) and (1.11) for an
isolated but mutually interacting set of particles is that the velocity of the center of mass of the
particles remains constant and that the total angular momentum of the set of particles about
its center of mass is conserved in any inertial frame .

1.1.5 Kinetic Energy

Another fundamental property of motion is the energy associated with it. Consider a particle
of mass m moving under the influence of a force f (arising due to the interactions it has with
the rest of the universe). The kinetic energy of the particle is defined with respect to an inertial
frame e and is given by the relationship
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KE ,
1
2

m||ẋ(t)||2 = 1
2m
||p(t)||2.

Observe that this quantity changes from inertial frame to inertial frame and hence is not a
quantity that is invariant for all inertial observers. In general, unlike total linear momentum
and total angular momentum, the total kinetic energy of a system of isolated particles need not
remain constant. However differentiating the Kinetic energy associated with given particle we
see that along the motion of a particle

d
dt

KE = m〈〈ẍ(t), ẋ(t)〉〉= 〈〈 f (t), ẋ(t)〉〉.

The quantity

W (t1, t2) =
∫ t2

t1
〈〈 f (t), ẋ(t)〉〉dt

is defined to be the work done by the force f acting on the particle during the time interval
[t1, t2].

Thus we have that the rate of change of kinetic energy of a particle is equal to the rate
of work done by the force acting on the particle. This is nothing but a statement of
conservation of energy of a set of interacting particles. The rate of work done is called
the power of the force.

1.1.6 Particle Collisions and Thermalization

In what follows we consider what happens to the total kinetic energy of a set of colliding
particles that are isolated from the rest of the universe. We will assume that the particles
interact with each other only when they collide with each other. Let us first consider what
happens when only two particles collide with each other. Let the two particles have a mass of
m1 and m2 respectively. Let e be an inertial frame and b be a frame that moves parallel to e
with origin coinciding with the center of mass of the two particles. We will call the frame b
the center of mass frame. Let x1,x2 be the Euclidean representation of the two particles in e
and let X1,X2 be the representation of the two particles in b. Let o be the representation of the
center of mass of the particles in the e frame. Then xi = o+Xi. Since the origin of b is at the
center of mass of the two particles we have

m1X1 +m2X2 = 0. (1.12)

Differentiating this we have

m1Ẋ1 +m2Ẋ2 = 0. (1.13)

Thus the total linear momentum of the particles in the e frame can be expressed as
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m1ẋ1 +m2ẋ2 = (m1 +m2)ȯ (1.14)

and the total kinetic energy of the particles can be expressed as

KE =
m1

2
||ẋ1||2 +

m2

2
||ẋ2||2, (1.15)

=
(m1 +m2)

2
||ȯ||2 + m1

2
||Ẋ1||2 +

m2

2
||Ẋ2||2. (1.16)

Let us consider what happens in a collision. Denote by a superscript ′ the variables that
describe the motion of the particle after collision. Principle of conservation of momentum
implies that

(m1 +m2)ȯ = (m1 +m2)ȯ′.

This shows that the center of mass velocity is unaltered by the collision12. Let us assume that
the kinetic energy is not lost in the collision13. Thus KE = KE′. This gives us

(m1 +m2)

2
||ȯ||2 + m1

2
||Ẋ1||2 +

m2

2
||Ẋ2||2 =

(m1 +m2)

2
||ȯ′||2 + m1

2
||Ẋ ′1||2 +

m2

2
||Ẋ ′2||2.

Since ȯ = ȯ′ we have

m1

2
||Ẋ1||2 +

m2

2
||Ẋ2||2 =

m1

2
||Ẋ ′1||2 +

m2

2
||Ẋ ′2||2.

From (1.13) we have

Ẋ2 =−
m1

m2
Ẋ1, Ẋ ′2 =−

m1

m2
Ẋ ′1,

and hence

||Ẋ1||2 = ||Ẋ ′1||2, ||Ẋ2||2 = ||Ẋ ′2||2.

This shows that, in a perfectly elastic collision, the magnitude of the velocities of each of
the particles do not change when viewed in the center of mass frame. Expression (1.12) also
tells us that in the center of mass frame the two particles appear to move in a straight line
through the origin. Thus what changes in a collision is only the angle of this straight line. The
cosine of the angle between this line and the velocity of the center of mass can be found from
ȯ · (Ẋ2− Ẋ1)

ȯ · (Ẋ2− Ẋ1) = ȯ · (ẋ2− ẋ1) =

(
m1ẋ1 +m2ẋ2

(m1 +m2)

)
· (ẋ2− ẋ1)

=
m2||ẋ2||2−m1||ẋ1||2 +(m1−m2)ẋ1 · ẋ2

m1 +m2
.

12 Note that as shown by (1.10) this conclusion holds in general as well.
13 Such collisions are called elastic collisions.
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Let us consider the case where the two particles have been contained in space so that the
particles would have been colliding elastically with the walls and with each other for a long
time. Since the only thing that changes in elastic particle collisions is their relative direction
of motion viewed in a center of mass frame of the two particles we can hypothesize that the
average of the angle between the center of mass motion and the motion relative to the center of
mass, over time, should be zero. That is 〈ȯ · (ẋ2− ẋ1)〉= 0. Here we have used the customary
notation of angle brackets to mean the time average over a long period of time. This in essence
assumes that on average there is no preferred directions of motion14. Thus it is also true that
〈ẋ1 · ẋ2〉 = 0. Under this assumption it follows that over a long period of time there is no
correlation between the center of mass motion and the motion with respect to the center of
mass. Then the above expression tells us that〈

m1||ẋ1||2

2

〉
=

〈
m2||ẋ2||2

2

〉
(1.17)

Which tells us that after many collisions we could expect that the average kinetic energy of the
two particles to be the same. When the system consists of a large number of particles, taking
particles pairwise into consideration we may conclude that after many collisions the average
kinetic energy of all the interacting particles become the same. This is the condition that is
known as thermal equilibrium.

Let us conclude this section by summarizing what we have learnt in this section.

(a) The law of conservation of linear momentum implies that the center of mass motion
of a set of colliding particles do not change over time.

(b) In addition if the particle collisions are elastic then the average kinetic energy of all
the colliding particles remain constant over time. This condition is known as thermal
equilibrium.

1.2 Description of Motion in Moving Frames

We can easily see that the construction of orthonormal frames is not unique and that, in
general, different observers can have different orthonormal frames. For instance consider
figure-1.5 where two observers have defined two right hand oriented orthonormal frames
e = [e1 e2 e3] and b = [b1 b2 b3] respectively. The position of the particle P(t) at a par-
ticular instant of time t is described by the two observers using the Euclidean representation
matrices x = [x1 x2 x3]

T and X = [X1 X2 X3]
T respectively. Let o be the Euclidean representa-

tion of the point O′ in the orthonormal frame e. That is let OP = ex, OO′ = eo and O′P = bX .
We are interested in determining the relationship between the observed motion in the two
different frames.

14 Justify using physically reasonable arguments why this assumption must be true.
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Fig. 1.4 The description of motion of a particle P(t) in two different orthonormal frames e and b
representing two different observers.

Let us begin by finding the relationship between the two representations x and X . Introduce
another frame e′ = [e′1 e′2 e′3], as shown in figure-1.5, with origin coinciding with O′ such that
its axis are of unit length and are also parallel to e. Let the representation of the point P in the
e′ frame be x′. That is let O′P = e′x′. From the Euclidean assumption of space it follows that

OP = OO′+O′P = eo+ e′x′ = ex

Since e and e′ are parallel to each other we have that the two representations x and x′ are
related by

x = o+ x′. (1.18)

However, what we are really interested in is the relationship between x and X .
Observe that one can represent each of the axis bi using the e′ frame as follows.

b1 = r11e′1 + r21e′2 + r31e′3,
b2 = r12e′1 + r22e′2 + r32e′3,
b3 = r13e′1 + r23e′2 + r33e′3.

This can be expressed in the matrix form

[b1 b2 b3]︸ ︷︷ ︸
b

= [e′1 e′2 e′3]︸ ︷︷ ︸
e′

r11 r12 r13
r21 r22 r23
r31 r32 r33


︸ ︷︷ ︸

R

.
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Fig. 1.5 Description of the point P(t) in three orthonormal frames e, e′, and b representing two differ-
ent observers.

It can be shown that the assumption of Euclidean 3D-space implies that b = e′R where R is a
3×3 special orthogonal matrix15. Since O′P = e′x′ = bX = e′RX we have that

x′ = RX . (1.19)

Thus we have that the two representations of the point P in the two frames e and b as
depicted in figure-1.4 are related by

x = o+RX . (1.20)

The above expression can also be expressed in matrix form as:[
x
1

]
=

[
R o
0 1

][
X
1

]
. (1.21)

This expression will be very useful when one deals with kinematic chains such as robot arms.

15 In exercise-3.9 you are asked to prove this. The space of all 3× 3 special orthogonal matrices is
denoted by SO(3). Recall that a special orthogonal matrix R satisfies RRT = RT R = I3×3 and det(R) =
1.
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Notice that the preceding discussion shows that the relationship between two right hand
oriented orthonormal frames e and b is uniquely given by a (o,R) ∈ R× SO(3) and
that conversely any (o,R) ∈ R× SO(3) defines the relationship between two right hand
oriented orthonormal frames e and b in a unique fashion.

1.2.1 Kinematics in Moving Frames

In general, since the position representation are different from frame to frame, the velocities
and accelerations expressed in one frame will be different form those expressed with respect
to another. Thus it is important to always specify the orthonormal frame with which they
are expressed. Consider the problem of describing the motion of a point P(t) that is moving
with respect to both frames e and b and let b be translating and rotating with respect to e.
Thus we have that all matrices x(t),X(t) and o(t),R(t) are changing with respect to time.
Differentiating the expression (1.20) relating the two position representations we find that the
two velocities ẋ and Ẋ measured in the two frames are related by

ẋ = ȯ+ ṘX +RẊ .

Similarly the two accelerations measured in the two frames ẍ and Ẍ are related by

ẍ = ö+ R̈X +2ṘẊ +RẌ .

In the following we proceed to find if Ṙ and R̈ can expressed a little more conveniently. In
exercise-3.9 we have seen that RT (t)R(t) = I. Thus it follows that ṘT R+RT Ṙ = 0, and hence
that

RT Ṙ =−(RT Ṙ)T = Ω̂ ,

where Ω̂ is a skew symmetric matrix. The space of all 3× 3 skew-symmetric matrices is
denoted by so(3).

Thus we have that if R(t) ∈ SO(3) then

Ṙ = RΩ̂ , (1.22)

where Ω̂(t) ∈ so(3).

Differentiating it twice we have R̈ = R(Ω̂ 2 +
˙̂

Ω). Substituting these expressions for Ṙ and
R̈ in the above expressions relating velocities and accelerations in the two frames e and b we
have,

ẋ = ȯ+R
(

Ω̂X + Ẋ
)
, (1.23)
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Rotation about e1 Rotation about e2 Rotation about e3

Fig. 1.6 Rotated Frames

ẍ = ö+R
(

Ω̂
2(t)X +2Ω̂ Ẋ +

˙̂
ΩX + Ẍ

)
. (1.24)

Thus we see that in order to find these relationships one needs to compute the matrices
Ω̂ ,Ω̂ 2 and ˙̂

Ω . As an illustration let us consider, easy to visualize, three special frame rota-
tions. We will also see that these three special type of rotating frames will become useful
when representing the motion of complicated systems as well. Consider the three rotating or-
thonormal frames a,b,c that are related to a fixed frame e as shown in figure 1.6. Each of the
frames a,b,c correspond to a simple counter clockwise rotation about the ith axis of e by an
angle equal to θi(t). Let a = eR1(θ1), b = eR2(θ2), and c = eR3(θ3). In exercise-3.10 you are
asked to show using direct calculations that the following expressions hold.

R1(θ1) =

1 0 0
0 cosθ1 −sinθ1
0 sinθ1 cosθ1

 , R2(θ2) =

 cosθ2 0 sinθ2
0 1 0

−sinθ2 0 cosθ2

 , R3(θ1) =

 cosθ1 −sinθ1 0
sinθ1 cosθ1 0

0 0 1

 ,
(1.25)

and

RT
1 Ṙ1 = Ω̂1 =

0 0 0
0 0 −θ̇1
0 θ̇1 0

 , RT
2 Ṙ2 = Ω̂2 =

 0 0 θ̇2
0 0 0
−θ̇2 0 0

 , RT
3 Ṙ3 = Ω̂3 =

 0 −θ̇1 0
θ̇1 0 0
0 0 0


and

Ω̂
2
1 =−θ̇

2
1

0 0 0
0 1 0
0 0 1

 , Ω̂
2
2 =−θ̇

2
2

1 0 0
0 0 0
0 0 1

 , Ω̂
2
3 =−θ̇

2
3

1 0 0
0 1 0
0 0 0

 .
Having seen how to calculate Ω̂ and Ω̂ 2 and noticing that they have a pattern we may ask

what general properties the 3× 3 skew-symmetric matrices have. In Section-1.2.2 we will
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investigate in detail several properties of 3× 3 special orthogonal matrices and 3× 3 skew-
symmetric matrices in order to facilitate these computations on one hand and on the other
hand to get a deeper understanding of the physical meaning of R ∈ SO(3) and Ω̂ ∈ so(3).

1.2.2 Infinitesimal Rotations and Angular Velocity

In this section we will take a closer look at the physical meaning of the skew symmetric matrix
Ω̂ = RT Ṙ. To do so we will have to first obtain a better understanding of special orthogonal
matrices. A given special orthogonal matrix R∈ SO(3) can be viewed in at least three different
ways. We have seen before that the relationship between two right hand oriented orthonormal
frames with coinciding origin is uniquely determined by a special orthogonal matrix and that
conversely every special orthogonal matrix uniquely defines a relationship between two such
frames. Below we will see that there are two other ways of looking at a special orthogonal
matrix. In one respect it can be seen as a coordinate transformation while in another respect
we can view it as an action on 3-dimensional Euclidean space by rigid rotations.

First to see how it represents a coordinate transformation consider the expression (1.19) a
bit more closely. What this says is that R can be thought of as a coordinate transformation
that relates the e′-frame coordinates of the point P, given by the matrix x′ to the b-frame
coordinates of the point P, given by the matrix X . This idea can be extended to any intrinsic
property16 of the particle such as velocity, momentum, or force, that can be considered as a
arrow in space with the foot coinciding with O′17 in the following manner.

Let e and b be two orthonormal frames with coinciding origin and let b = eR for some
R ∈ SO(3). If gamma is some intrinsic property we may represent it by a point G with
representation γ in the e-frame or with Γ in the b-frame. Then we have from (1.19) that
the two representations of the intrinsic quantity are related by

γ = RΓ . (1.26)

In fact, insisting that this relationship holds can be taken to be the meaning of being
intrinsic or coordinate independent.

On the other hand a given R ∈ SO(3) can be viewed as a map that acts on a point P in
space to give a new point PR in the following manner. Let e be some ‘fixed’ frame and let x be
the representation of P in the e frame. Let PR be the point in space that has the representation
Rx in the e-frame. That is let OP = ex and OPR = e(Rx). This allows one to consider R ∈
SO(3) as a transformation that takes P to a new point PR in space by mapping x→ Rx and
identifying PR with the point in space that has the representation Rx in the e-frame. Let Q be

16 A property that does not depend on the choice of coordinates used to represent it is referred to as an
intrinsic property.
17 Also referred to as a directed line segment. This is what you would have traditionally learnt as
vectors at the secondary school level.
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Fig. 1.7 The b-frame is fixed on the box and the e-frame is some ‘fixed’ reference frame.

another point in space that has the representation y with respect to the e-frame. Then since
RT R = RRT = I3×3 we see that ||Rx−Ry||= ||x− y|| and 〈〈Rx,Ry〉〉= 〈〈x,y〉〉 and hence that
this map preserves lengths and angles in space. Such maps that transform points in space
to other points in space in such a way that it preserves distances between points and angles
between lines are called isometries. Let us apply this map to all points in space and see how
they transform by considering an illustration. Consider the set of points defined by a cube in
space as shown in the left hand side of the figure-1.7. The cube is chosen such that the point P
coincides with the vertex of this cube that is diagonally opposite the vertex at the centre of the
frame O as shown in the left hand side of figure-1.7. Since the map that takes x→Rx preserves
lengths and angles in space we see that when the points defining the cube are transformed by
R to the new points, using the above recipe, the new transformed points will also correspond
to a cube that is identical to the initial cube with the exception of it now being ‘rotated’ about
the vertex O. This situation is shown in the right hand side of figure-1.7. Let b be a frame such
that it is fixed with respect to the cube such that initially both b and e coincide. It is now easy
to see that the new orientation of the frame b fixed to the cube is related to the frame e by the
relationship b = eR.

Thus we see that a given R ∈ SO(3) can be uniquely identified with a ‘rigid rotation’
of space and conversely that every rigid rotation of space about a fixed point can be
identified with an R ∈ SO(3). This also shows that the configuration of a rigid body
moving such that one of its points remains fixed in space can be uniquely identified with
an R ∈ SO(3).

Let us now revert our attention to the 3×3 skew symmetric matrix Ω̂ = RT Ṙ. We will see
that it can be interpreted as the angular velocity of the frame b about e. To do so we will first
need to be familiar with several properties of the space of 3× 3 skew symmetric matrices,
so(3).
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It is straightforward to see that so(3) is a three dimensional real vector space under ma-
trix addition and scalar multiplication18. Thus it is isomorphic19 to R3. That is, there is a
one-to-one and onto correspondence between elements of R3 and elements of so(3). The iso-
morphism ̂ : R3→ so(3) that is explicitly defined by,

Ω̂ =

 0 −Ω3 Ω2
Ω3 0 −Ω1
−Ω2 Ω1 0

 , (1.27)

for Ω =(Ω1,Ω2,Ω3)∈R3 gives one such identification. It is easy to verify that ̂:R3→ so(3)
is linear. That is X̂ +Y = X̂ +Ŷ and α̂X = αX̂ for any X ,Y ∈R3 and α ∈R. It is also easy to
directly verify that this isomorphism satisfies

Ω̂X = Ω ×X , (1.28)

〈〈X ,Y 〉〉=−1
2

trace(X̂Ŷ ), (1.29)

for X ,Y,Ω ∈ R3.
In exercises 3.11 – 3.15 you are asked to show the following very useful and interesting

properties of 3×3 skew-symmetric matrices:

R̂X = RX̂RT , (1.30)

X̂2 = XXT −||X ||2I3×3. (1.31)

for any X ∈ R3 and R ∈ SO(3).
Let us now consider smooth rotations that are parameterised by a parameter t that we may

consider to be time. Let R(t) be a smooth curve in the space SO(3) such that R(0) = I3×3.
Then from the above discussion we see that R(t) represents a smooth rigid rotation of space
for all t. Let b(t) = eR(t) be the corresponding rotating frame. Since R(0) = I3×3 we see
that b(0) = e. Let P(t) be a point in space that corresponds to P(0) being ‘rotated’ by R(t).
That is if X is the representation of the point P(0) in the e = b(0) frame then R(t)X is the
representation of the point P(t) in the e-frame. Thus since rotations by R preserve angles and
lengths in space, P(t) will appear to be fixed as viewed in the b(t) frame and will be equal to
X . That is, the representation X of the point P(t) in the b(t) frame will not depend on t. Let
x(t) be the representation of the point P(t) in the e-frame. Then x(t) = R(t)X . The velocity
of the point P(t) in the e-frame is thus given by ẋ(t) = Ṙ(t)X . Previously we have seen that
RT (t)Ṙ(t) = Ω̂(t) is always a skew-symmetric matrix. Thus we have that the velocity of the
point P(t) as expressed in the e-frame has the representation ẋ(t) = R(t)Ω̂(t)X . Therefore
from (1.28) we see that the velocity of the point P(t) can be expressed in the e-frame as

ẋ = ṘX = RΩ̂X = R(Ω ×X) = (RΩ)× (RX) = (RΩ)× x = ω× x, (1.32)

18 See exercise 3.11.
19 An isomorphism is a continuous one-to-one and onto map where the inverse is also continuous.
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where we have used the property R(X ×Y ) = RX × RY and have set ω , RΩ in the last
equality. Notice that ω is the e-frame representation of the quantity that has the representation
Ω in the b-frame. Also notice that ||ω||= ||RΩ ||= ||Ω ||.

Since ω(t)×ω(t) = 0 we see that all points in space that lie along the direction ω(t) as
viewed in the e-frame have zero velocity when R(t) acts on them by a ‘rotation’. On the other

Fig. 1.8 The meaning of angular velocity.

hand by the definition of the cross product in R3 and the last equality of the expression (1.32)
we have

ẋ = ||ω|| ||x|| sinθ n

where θ is the angle between ω and x in the e-frame as shown in figure-1.8 and n = ω/||ω||
is an orthonormal direction segment that is both mutually perpendicular to the direction given
ω = RΩ in the e-frame and OP. Thus we see that P(t) is instantaneously rotating about ω(t)
as viewed in the e-frame. Since X was arbitrary we see that this is true for every point in space.
Which shows that under the ‘rotation’ by R(t) every point in space is instantaneously rotating
about ω with an angular rate of rotation equal to ||ω||= ||Ω || as viewed in the frame e.

The above discussion motivates one to define ω(t) = R(t)Ω(t) to be the angular velocity
of the frame b with respect to the frame e represented in the e-frame. We will call it
the spatial angular velocity of the frame b with respect to e and since Ω is its b-frame
representation, we will call Ω the body angular velocity of the frame b with respect to e.
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1.2.3 Angular Momentum in Moving Frames

We observe that the angular momentum πi of a particle Pi about O can be expressed as

πi = mi(xi−o)× ẋi = miR
(
Xi× (Ω ×Xi + Ẋi +RT ȯ)

)
,

= R
(
−miX̂2

i Ω +miXi× (RT ȯ+ Ẋi)
)
,

where the last equality follows from

Xi×Ω ×Xi =−Xi×Xi×Ω =−X̂2
i Ω .

The quantity

Ii ,−miX̂2
i = mi

(
||Xi||2I3×3−XiXT

i
)
, (1.33)

is defined as the moment of inertia of the particle P about the point O′ in the frame b.
Using this we can now express the angular momentum of P about O′ as

πi = R
(
IiΩ +miXi× (RT ȯ+ Ẋi)

)
. (1.34)

The above expression shows that

Πi ,
(
IiΩ +miXi× (Ẋi +RT ȯ)

)
, (1.35)

is the representation of the angular momentum of Pi about O in the moving frame b(t).

In what follows we consider the case where the particle Pi appears fixed in the moving
frame b. That is when Ẋi = 0. In this case, differentiating (1.34) and using the Jacobi property
of cross products,

A×B×C+B×C×A+C×A×B = 0

we find that

π̇i = R
(
IiΩ̇ − IiΩ ×Ω +−mi (RT ȯ)×Ω ×Xi +miXi×RT ö

)
.

On the other hand we have from (1.6) that

π̇i = R
(
−mi(RT ȯ)×Ω ×Xi +Xi×Fi

)
,

where Fi = RT fi is the representation of the force acting on the particle p in the b-frame and
since Xi×Fi =RT ((xi−o)× fi) the quantity Ti =Xi×Fi is the representation of the moment of
the force acting on p about the point o with respect to the moving frame b(t). Thus combining
the last two expressions we have

IiΩ̇ = IiΩ ×Ω −miXi×RT ö+Xi×Fi. (1.36)
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In summary in the case where the particle Pi is fixed with respect to the frame b we have
that

Πi =
(
IiΩ +miXi×RT ȯ

)
,

IiΩ̇ = IiΩ ×Ω −miXi×RT ö+Xi×Fi

We will see that the last expression above will play a crucial role in deriving Euler’s rigid
body equations of motion.

1.2.4 Kinetic Energy in Moving Frames

Recall that the kinetic energy KEi of a particle of mass mi is defined with respect to an inertial
frame e and is given by the relationship

KEi ,
1
2

mi||ẋi(t)||2,

where || · || is the Euclidian norm in R3. Since ||RX || = ||X || we also have that the kinetic
energy of the particle can also be expressed as

KEi =
1
2

m||ẋi||2 =
1
2

m||RT ẋi||2 =
1
2

m||RT ȯ+ Ω̂Xi + Ẋi||2,

=
1
2

m
(
||ȯ||2 +2ȯT R(Ω̂Xi + Ẋi)+ ||Ω̂Xi||2 +2ẊT

i Ω̂Xi + ||Ẋi||2
)
.

Note that ||Ω̂Xi||2 = ||X̂iΩ ||2 =−Ω T X̂2
i Ω . Using the substitution Ii =−miX̂2

i =mi(||Xi||2I3×3−
XiXT

i ) the kinetic energy of the particle can be expressed as

KEi =
1
2

(
mi||ȯ||2 +2miȯT R(Ω̂Xi + Ẋi)+Ω

T IiΩ +2miẊT
i Ω̂Xi +mi||Ẋi||2

)
. (1.37)

If the particle P is fixed with respect to the moving frame b then Xi = constant and hence

KEi =
1
2
(
mi||ȯ||2 +2miȯT R(Ω ×Xi)+Ω

T IiΩ
)
,

=
1
2
(
mi||Vo||2 +2miVo(Ω ×Xi)+Ω

T IiΩ
)
, (1.38)

where we have used the identity Vo = RT ȯ in the last expression.
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1.2.5 Newton’s Law in Moving Frames

Recall that Galilean laws of mechanics states that the total linear momentum of a set of in-
teracting but otherwise isolated set of particles is conserved when observed in any inertial
frame. Thus Newton’s second law hold only in inertial frames. Let e be an inertial frame and
let the representation of the position of a particle m in the e-frame be x. Let the force act-
ing on the particle due to the interaction it has with the other particles of the Universe have
the representation f in the e-frame. Then Newton’s second law gives f = mẍ. If an observer
makes measurements with respect to a different frame b that is translating and rotating with
respect to e then it is natural to ask what Newton’s second law looks like with respect to the
measurements made with respect to the b-frame.

At the end of section-1.2 we see that the acceleration of the particle in the e-frame is related
to the b-frame quantities by (1.24). Let F be the representation of the force acting on the
particle in the b-frame. That is let F = RT f . Then we have the following:

Let e be an inertial frame and let b be a translating and rotating frame a shown in figure-
1.4. Denote the representation of the origin of the b-frame with respect to the e-frame
be o and let R ∈ SO(3) be the rotation matrix that relates the b frame to the e by the
relationship b= eR. Let the representation of the position of a particle m in the e frame be
x while let its representation in the b-frame be X and the force acting on the particle due
to the interaction it has with the other particles of the Universe have the representation f
in the e-frame. Newton’s second law expressed using the moving b-frame quantities are

F = mRT ö+mΩ̂
2X +2mΩ̂ Ẋ +m ˙̂

ΩX +mẌ , (1.39)

where F = RT f is the representation of the physical force acting on the particle in the
b-frame.

Notice that this equation is completely expressed using only the b(t)-frame representation
of the force given by F(t), the skew-symmetric matrix Ω̂ = RT Ṙ, the position given by X(t)
and the derivatives of the position Ẋ and Ẍ . Thus this expression, if you may, can be consid-
ered to be the ‘appropriate version’ of the Newton’s equations in the rotating frame b(t).

Imagine the situation where the observer is unaware of the motion of its frame-b and thinks
of it as an inertial frame20. Then the observer, having taken a mechanics class during her un-
dergraduate program, will interpret mass times acceleration measured in her reference frame
b to be the force felt in b. That is, she will think that

mẌ = F−
(

mRT ö+mΩ̂
2X +2mΩ̂ Ẋ +m ˙̂

ΩX
)
, (1.40)

is the force acting on the particle as expressed in her frame b. However the quantity F(t) =
RT (t) f (t) is the only physically meaningful force that she feels. Thus an observer moving

20 Like for instance when we think of an earth fixed frame to be inertial.
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with the rotating frame will, in addition to the fundamental interacting forces, feel that there
exists another resultant ‘apparent force’:

Fapp , −m RT (t)ö(t)︸ ︷︷ ︸
Einstein

−m Ω̂
2(t)X(t)︸ ︷︷ ︸

Centrifugal

−2m Ω̂(t)Ẋ(t)︸ ︷︷ ︸
Coriolis

−m ˙̂
Ω(t)X(t)︸ ︷︷ ︸
Euler

, (1.41)

simply due to its ignorance of the motion of its frame. The first term −m RT (t)ö(t) is known
as the Einstein force, the second term −m Ω̂ 2(t)X(t) is known as the Centrifugal force, the
third term −2m Ω̂(t)Ẋ(t) is known as the Coriolis force and the last term −m ˙̂

Ω(t)X(t) is
known as the Euler force. Observe that all these apparent forces have mass as a multiplicative
factor. Note that the Einstein apparent force is observed due to the translational ignorance of
the one’s reference frame while the Centrifugal, Coriolis, and Euler forces are observed due
to the rotational ignorance of the reference frame.

Using these expression we can explain many physical effects. In exercise 3.7 you are asked
to explain why a person standing on a scale inside an elevator sees his or her weight doubled
as the elevator accelerates up at a rate of g and sees the weight reduced to zero if the elevator
decelerates at a rate of g where g is the gravitational acceleration. You are also asked to show
that if, for some reason, the gravitational force field vanished and that the elevator was moving
up at an acceleration of g then the scale would show the correct weight of the person. This last
observation shows that a person inside the elevator can not distinguish between the following
two cases:

a.) Gravity is present and the elevator is standing still (or moving at constant velocity).
b.) Gravity is absent and the elevator is accelerating upwards at a rate of g.

It is this observation that led Einstein to the conclusions of General Relativity and in particular
that gravity is an apparent force !!!

In the following sections we will demonstrate the value of equation (1.39) in writing down
the equations of motion. In particular in section-1.2.5.1 we will see how to describe the motion
of a particle constrained to move in two dimensions using polar coordinates and in section-
1.2.6.1 we will use it to explain some of the apparent effects of Earth’s rotation.

From an applications point of view the use of (1.39) in predicting the motion of objects
moving under complicated geometric constraints is invaluable since in such a case rep-
resenting position, velocity and the fundamental constraint force interactions is mostly
convenient in a frame where the object appears fixed. Then Newton’s equation (1.39) in
the frame where the object appears fixed reduce to

F = mRT ö+m(Ω̂ 2 +
˙̂

Ω)X . (1.42)

In this case what remains is the computation that relates the frame in which the object
appears fixed to an inertial frame; namely R and Ω̂ = RT Ṙ.
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In section-1.2.6 we show an example of this approach in describing the motion of a bead
constrained to move on a rotating hoop. We also invite you to try this approach in describing
similarly constrained motion that is described in exercises 3.19-3.22.

1.2.5.1 Description of Particle Motion in a Plane using Polar Coordinates

For a particle restricted to move in 2-dimensions, it is sometimes convenient to write down the
motion in polar coordinates (r,θ). This amounts to observing the motion in a moving frame
b(t) = [er(t) eθ (t) ez(t)] (refer to figure 1.9) where er aligns along the particle P at all times.
Consider the orthonormal frame b(t) = [er eθ ez]. Let e = [e1 e2 e3] be an Earth fixed frame.

Fig. 1.9

Then b(t) = eR(t) where

R(t) =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 .
Thus we have

Ω̂ =

0 −θ̇ 0
θ̇ 0 0
0 0 0

 , ˙̂
Ω =

0 −θ̈ 0
θ̈ 0 0
0 0 0

 , Ω̂
2 =−θ̇

2

1 0 0
0 1 0
0 0 0

 .
The representation of P in this frame is

X =

 r
0
0


and hence we see that

Ẋ =

 ṙ
0
0

 Ẍ =

 r̈
0
0

 .
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From Newton’s equations in the b-frame given by (1.39) we have

m

 r̈
0
0

=−

−mrθ̇ 2

0
0

−
 0

2mṙθ̇

0

−
 0

mrθ̈

0

+
 Fr

Fθ

Fz

 .
Observe that the apparent force known as the Centrifugal force is mrθ̇ 2 and is in the er

direction, the Coriolis force is−2mṙθ̇ in the eθ direction and the Euler force is−mrθ̈ in the eθ

direction and we recover what we have learnt in our junior level physics classes. Simplifying
the above equations we have that

mr̈−mrθ̇
2 = Fr,

mrθ̈ +2mṙθ̇ = Fθ

Fz = 0.

Observe that if we were to constrain the motion of the particle to a circle, then r is a
constant and thus we must necessarily exert a physical force Fr = −mrθ̇ 2 in the er direction
(radial direction) and a force Fθ = mrθ̈ in the eθ direction (tangential direction) to enforce
this constraint. Observe that the radial force that we must exert is equal to the apparent force
we call centrifugal force and the tangential force we must exert is equal to the negative of
the apparent force we call Euler’s force. Compare the results of this with those obtained in
exercise 3.18.

1.2.6 Example: Bead on a Rotating Hoop

As an illustration of the use of (1.39) that represents Newton’s equations in a moving frame we
will consider the problem of analyzing the motion of a bead on a rotating hoop21. A schematic
of the system is shown in figure-1.10.

Let us choose frames as shown in Figure-1.11 and Figure-1.12 and assume that the frame
e is an inertial frame. We will denote by P the position of the bead and by O the origin of the
e-frame. Let c be another orthonormal frame such that it moves with respect to e in such a
way that c3 ≡ e3 and c1 is always orthogonal to the plane of the hoop as shown in figure-1.11.
Then the two frames c and e are related by c = eR3(θ) where we use the customary notation
Ri(θ) to denote a rotation about the ith axis by an angle equal to θ . Specifically in this case,

R3(θ) =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 .
Let b be another orthonormal frame such that it moves with respect to c in such a way that

b1 ≡ c1 and b2 is always along OP as shown in figure-1.12. Then the two frames b and c are
related by b = cR1(φ) where

21 This section was typed and illustrated by Mr. K. G. B. Gamagedara E/09/078.
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Fig. 1.10 Bead on a Rotating Hoop.

Fig. 1.11 The view of the system from the top.
Fig. 1.12 View of the system from a direction per-
pendicular to the plane of the hoop.

R1(φ) =

1 0 0
0 cosφ −sinφ

0 sinφ cosφ

 .
Thus we have that, the two frames b and e are related by b = eR3(θ)R1(φ) = eR which

gives that R = R3(θ)R1(φ).
The representation of the position of P, in the b frame is seen to be,

X =

0
r
0

 ,
and is independent of time and hence we have that Ẋ = Ẍ = 0. In fact it is this very convenient
reason why we chose the b-frame to move with the particle. The Newton’s equation (1.39)
in the b-frame then becomes, F = m(Ω̂ 2 +

˙̂
Ω)X , where F is the representation, in b, of the

fundamental forces acting on the bead due to its interaction with the rest of the Universe.
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Notice that it is convenient to express the constraint interactions in the frame b while it is
convenient to express the gravitational interaction in the c-frame. Thus if f is the representa-
tion of the force in the e-frame and F is the representation of the force in the b-frame we have
that

e f = bF = b

FN1
FN2
0

+ c

 0
0
−mg

= b

FN1
FN2
0

+bRT
1 (φ)

 0
0
−mg


Hence we have

F =

FN1
FN2
0

+RT
1 (φ)

 0
0
−mg

=

 FN1
FN2−mgsinφ

−mgcosφ

 .
Now that we have found F what remains to write down the Newton’s equations F =m(Ω̂ 2+

˙̂
Ω)X explicitly in the moving frame b is the computation of ˙̂

Ω and Ω̂ 2. We know that Ω̂ =
RT Ṙ. Since

Ṙ = R3Ω̂3R1 +R3R1Ω̂1 = R(RT
1 Ω̂3R1 + Ω̂1)

we have that

Ω̂ = RT
1 Ω̂3R1 + Ω̂1.

Recall from (1.30) we have that R̂Ω = RΩ̂RT . Thus using the linearity of thê isomorphism
we find that the 3×1 version of Ω̂ is explicitly given by

Ω = RT
1 (φ)Ω3 +Ω1 =

 φ̇

θ̇ sinφ

θ̇ cosφ


and hence that

Ω̇ =

 φ̈

θ̈ sinφ + θ̇ φ̇ cosφ

θ̈ cosφ − θ̇ φ̇ sinφ

 .
From these we have that the corresponding skew-symmetric matrices are given by

Ω̂ =

 0 −θ̇ cosφ θ̇ sinφ

θ̇ cosφ 0 −φ̇

−θ̇ sinφ φ̇ 0



˙̂
Ω =

 0 −(θ̈ cosφ − θ̇ φ̇ sinφ) (θ̈ sinφ + θ̇ φ̇ cosφ)
(θ̈ cosφ − θ̇ φ̇ sinφ) 0 −φ̈

−(θ̈ sinφ + θ̇ φ̇ cosφ) φ̈ 0

 .
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Note from (1.31) that Ω̂ 2 = ΩΩ T −||Ω ||2I and hence that

Ω̂
2 =

 −θ̇ 2 φ̇ θ̇ sinφ φ̇ θ̇ cosφ

φ̇ θ̇ sinφ −φ̇ 2− θ̇ 2 cosφ
2

θ̇ 2 cosφ sinφ

φ̇ θ̇ cosφ θ̇ 2 cosφ sinφ −φ̇ 2− θ̇ 2 sinφ
2


Substituting these in the Newton’s equations (1.39) in the b-frame we haveFN1

FN2
0

= m

 −rθ̈ cosφ +2rφ̇ θ̇ sinφ

−rφ̇ 2− rθ̇ 2 cosφ 2 +gsinφ

rθ̇ 2 sinφ cosφ + rφ̈ +gcosφ

 .
The first two rows can be used to find the constraint forces FN1 and FN2 that constrain the

bead to stay on the hoop while the third row can be used to describe the motion of the bead as
follows:

rφ̈ =−cosφ
(
g+ θ̇

2 sinφ
)
.

Similarly to what we have done in this problem, you are invited to try out the exercises
3.19 – 3.22 at this point in order to get an idea of how convenient it is to write down equa-
tions of motion using appropriately chosen moving frames and equation-1.39. The idea is that
writing down position, velocity and the fundamental constrain force interactions are mostly
convenient in a frame where the particle or the object appears fixed. Then what remains is the
computation that relates this frame to an inertial frame and then use equation to write down
Newton’s equations in the moving frame in which the particle or the object appears to be fixed.

1.2.6.1 Effects of Earth’s Rotation About its Axis

In the following we also use the equations (1.41) to show the effects of Earths rotation on
gravity as well as on the formation of hurricanes and the motion of a long pendulum known
as the Foucault’s pendulum.

Let us consider the effect that the Earth’s rotation about its axis has on the motion of a
particle as observed in an Earth fixed frame at a point O′ (with latitude α) on the surface of
the Earth. Consider figure 1.13. Let c(t) be an ortho-normal frame fixed on Earth with center
at O′. The frame is oriented such that c2 is aligned perpendicular to the Earth (vertical direc-
tion), c3 is aligned in the South - North direction (towards north along the latitude), and c1
is aligned in the East - West direction (towards west along the longitude). Let b be a frame
that is parallel to c and fixed on Earth with origin at the center of the Earth O. Let a be a
frame with origin at O and a3 aligned along the axis of rotation of the Earth, a1 ≡ b1 and O′

lies in the a2− a3 plane as shown in figure-1.13. Thus if b(t) = a(t)R1(α) where α is the
latitude angle and is a constant and R1(α) is one of the three basic rotations given in (1.25).
Let e be a frame with origin, O, at the center of Earth and parallel to a frame fixed on the
sun. The frame is oriented such that the e3 direction coincides with the axis of rotation of the
Earth, ie a3≡ e3 and a(t) = eR3(θ) where θ is the angle of rotation of the Earth about its axis.

We are interested in analyzing the motion of a particle P as observed in the frame c(t). Let the
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Fig. 1.13 Effects of Earth’s Rotation about its Axis: Frame c is fixed on the surface of the Earth with
origin coinciding at O′. Frame b is parallel to c with center O coinciding with the center of the earth.
Frame a is fixed on the earth with origin at O and a3 aligned along the axis of rotation of the earth and
a2 in the b2,b3 plane. The origin of frame e coincides with O and e3 is always aligned along a3.

representation of the point P in the c(t) frame be Xp(t), ie. O′P= c(t)Xp(t). Since OO′= c(t)o
and c is parallel to b we have that OP = OO′+O′P = b(t)(o+Xp). Since by construction O′

is a distance r (r is the radius of the Earth) away on the b2 axis, o = [0 r 0]T and is a constant.
Thus if x(t) is the representation of P in e we have

ex(t) = b(t)(o+Xp(t)) = eR3R1 (o+Xp(t))︸ ︷︷ ︸
X

= eRX .

Thus x = RX(t) where R = R3R1 and X = o+Xp. From Newton’s equations in the rotating
frame, (1.39), we have

mẌ(t) =−m Ω̂
2(t)X(t)−2m Ω̂(t)Ẋ(t)−m ˙̂

Ω(t)X(t)+RT f (t). (1.43)

Let us decompose the total force in to two components f = f g + f e where f g is the gravita-
tional force and f e is the additional external forces. Gravity acts in the OP direction. Thus

f g =− mg
||x||

x =− mg
||X ||

RX ,

and hence
RT f g =− mg

||X ||
X .
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Substituting this in (1.43) and noting that the Earth is rotating at a constant rate (hence ˙̂
Ω = 0)

we have

Ẍ = −Ω̂
2X−2Ω̂ Ẋ−g

X
||X ||

+
1
m

RT f e, (1.44)

= −2Ω̂ Ẋ−
(

gI3×3 + ||X ||Ω̂ 2
) X
||X ||

+
1
m

RT f e. (1.45)

Observe that these equations describe the motion of a particle as observed in a frame fixed on
Earth with origin coinciding with the center of the Earth. From (1.44) it can be seen that the
motion of the particle in the Earth fixed frame, in addition to the gravity and external forces,
is also influenced by the Centrifugal and Coriolis terms that arise due to the ignorance of
the rotation of the Earth. In equation (1.45) the Centrifugal term has been combined with the
gravity term. This allows one to see that the effective gravity felt by an observer will change
with the latitude of the location of the observer. We will explain this in a bit more detail at the
end of this section.

Recall X = o+Xp where o is a constant and Xp is the representation of the point P in the
Earth fixed frame c fixed on the surface of the Earth at O′. Then Ẋ = Ẋp and Ẍ = Ẍp thus from
(1.45) we have that

Ẍp =−2Ω̂ Ẋp−
(

gI3×3 + ||Xp +o||Ω̂ 2
) Xp +o
||Xp +o||

+
1
m

RT f e

=−2Ω̂ Ẋp− Ω̂
2Xp−

g
||Xp +o||

(Xp +o)− Ω̂
2o+

1
m

RT f e (1.46)

describes the motion of a point particle m as observed in the Earth fixed frame with origin O′

on the surface of the Earth. This is the case that applies to us when we observe particle motion.
Since compared to Xp the quantity o is very large (since r is very large) we can approximate
||(Xp +o)|| ≈ r and (Xp +o)/||(Xp +o)|| ≈ o and then (1.46) approximates to

Ẍp =−2Ω̂ Ẋp− Ω̂
2Xp−

(
gI3×3 + rΩ̂

2
)

χ +
1
m

RT f e, (1.47)

where χ = [0 1 0]T . These equations can be used to describe many natural phenomena. For
instance it explains why a Hurricane formed in the Nothern hemisphere rotates in a counter–
clockwise direction and a Hurricane formed in the Southern hemisphere rotates in a clockwise
direction (see figure 1.14). You are asked to show this in exercise 3.23. It can also be used to
show the precession of the oscillating plane in the Foucault’s pendulum (see figure-1.15).

The rotational velocity of the Earth, Ωe =
2π

23h 56m 4s = 7.292×10−5rad/s, is very small and
thus Ω̂ and Ω̂ 2 are very small and for most applications these effects can be neglected and
then the equations (1.47) reduce to the usual equations of projectile motion given by

Ẍp =−gχ +
1
m

RT f e. (1.48)

Explicitly written down they are:
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(a) A Southern Hurricane (Catarina). (b) A Northern Polar Hurricane.

Fig. 1.14 Figures show the clockwise and anti-clockwise rotation of respectively a southern hemi-
sphere and northern hemisphere formed hurricane. Figures are courtesy of Wikipedia.

Ẍp1 =
1
m

F1, (1.49)

Ẍp2 = −g+
1
m

F2, (1.50)

Ẍp3 =
1
m

F3. (1.51)

Fig. 1.15 The shift in the plane of oscillation of the Foucault Pendulum.

Let us now explicitly consider the effects of the rotation of Earth. Let
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γ(t),−
(

gI3×3 + rΩ̂
2
)

χ +
1
m

RT f e,

and then (1.47) can be expressed as

Ẍp =−Ω̂
2Xp−2Ω̂ Ẋp + γ(t), (1.52)

Defining Zp = [XT
p ẊT

p ]
T we can arrange this equation as

Żp = AZp +B(t),

where

A =

[
0 I3×3

−Ω̂ 2 −2Ω̂

]
, B(t) =

[
0

γ(t)

]
.

From linear systems theory we find that the solution to this differential equation is explicitly
given by

Zp(t) = eAtZp(0)+
∫ t

0
eA(t−τ)B(τ)dτ. (1.53)

To compute eAt we need Ω̂ that is given by RT Ṙ = Ω̂ . Since R = R3R1 differentiating we
have that

Ṙ = Ṙ3R1 = R3Ω̂eR1 = R3R1 RT
1 Ω̂eR1 = RΩ̂ ,

Now from Ṙ3 = R3Ω̂e we have that

Ω̂e =

 0 −θ̇e 0
θ̇e 0 0
0 0 0

 ,
where θ̇ = θ̇e is the angular velocity of Earth about its axis of rotation. Hence we have that

Ω̂ = RT
1 Ω̂eR1.

Thus we have

Ω̂ = θ̇e

 0 −cosα sinα

cosα 0 0
−sinα 0 0

 ,
and

Ω̂
2 =−θ̇

2
e

1 0 0
0 cos2 α −cosα sinα

0 −cosα sinα sin2
α

 .
Substituting these in (1.53) we can explicitly find Xp(t) and Ẋp(t). Below we will do this for
a special case where the observer is on the equator of the Earth.

Example 1.2. Consider the following problem. A cannon is released from a geostationary
weather balloon that is at a point which is directly h meters above a point on the equator.
Where will the cannon land?
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At the equator the latitude is zero, that is α = 0. Since no other external forces are present
F = 0. Also since the cannon is released carefully Ẋp(0) = [0 0 0]T and Xp(0) = [0 h 0]T In
this case

Ω̂ = θ̇e

0 −1 0
1 0 0
0 0 0

 , Ω̂
2 =−θ̇

2
e

1 0 0
0 1 0
0 0 0

 , γ =−(g− rθ̇
2
e )

0
1
0

 .
eAt =


cos
(
t θ̇e
)
+ t θ̇e sin

(
t θ̇e
)

sin
(
t θ̇e
)
− t θ̇e cos

(
t θ̇e
)

0 t cos
(
t θ̇e
)

t sin
(
t θ̇e
)

0
t θ̇e cos

(
t θ̇e
)
− sin

(
t θ̇e
)

cos
(
t θ̇e
)
+ t θ̇e sin

(
t θ̇e
)

0 −t sin
(
t θ̇e
)

t cos
(
t θ̇e
)

0
0 0 1 0 0 t

t θ̇ 2
e cos

(
t θ̇e
)

t θ̇ 2
e sin

(
t θ̇e
)

0 cos
(
t θ̇e
)
− t θ̇e sin

(
t θ̇e
)

sin
(
t θ̇e
)
+ t θ̇e cos

(
t θ̇e
)

0
−t θ̇ 2

e sin
(
t θ̇e
)

t θ̇ 2
e cos

(
t θ̇e
)

0 −sin
(
t θ̇e
)
− t θ̇e cos

(
t θ̇e
)

cos
(
t θ̇e
)
− t θ̇e sin

(
t θ̇e
)

0
0 0 0 0 0 1



Then from (1.53) and the initial conditions we have

Xp(t) = h

sin
(
t θ̇e
)
− t θ̇e cos

(
t θ̇e
)

cos
(
t θ̇e
)
+ t θ̇e sin

(
t θ̇e
)

0

− (g− rθ̇
2
e )
∫ t

0

(t− τ)sin(θ̇e(t− τ))
(t− τ)cos(θ̇e(t− τ))

0

dτ

Using a power series expansion of the sin and cos terms and neglecting terms of θ̇ 3
e and higher

we have

Xp(t) = h

 0(
1− t2θ̇ 2

e
2

)
0

− (g− rθ̇
2
e )
∫ t

0

 θ̇e(t− τ)2

(t− τ)− θ̇ 2
e (t−τ)3

2
0

dτ

= h

 0(
1− t2θ̇ 2

e
2

)
0

− (g− rθ̇
2
e )

 θ̇et3

3
t2

2 −
θ̇ 2

e t4

8
0

 .
Let T be the time it takes for the cannon to land on the ground. That is Xp2(T )≈ 0. Thus from
the second line of the matrix expression above we have

T ≈

√
2h

(g− rθ̇ 2
e )

.

At this time instant the first line of the matrix expression above gives us that

Xp1(T )≈−
(g− rθ̇ 2

e )θ̇e

3
T 3 =−2hθ̇e

3

√
2h

(g− rθ̇ 2
e )

That is, a cannon dropped from a vertical height, h, from a point O′ on the equator will land

at a distance (2hθ̇e/3)
√

2h/(g− rθ̇ 2
e ) to the East from O′. Approximately if h = 500m then

T ≈ 10s and the cannon will fall 1cm towards the East. Can you explain why it would fall to
the East instead of the West?
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1.3 Rigid Body Motion

In this section we consider the motion of a collection of non co-linear interacting particles
P1,P2, · · · ,Pn where the interactions ensure that the relative distance between any two particles
remain the same at all time. Such a set of particles is called a rigid body. Rigid or not we have
shown in section 1.1.4 that the rate of change total linear momentum of the particles of the
body is equal to the total resultant external forces acting on the body and that the rate of
change total angular momentum of the particles of the body about the center of mass of the
body is equal to the total resultant moment of the external forces acting on the body. From
(1.5) and (1.34) we find that even though writing down the total angular momentum in an
inertial frame e is not straightforward it can be more conveniently expressed in a body fixed
frame b. Below we will see that this allows one to write down the equations of motion of a
rigid body in a much more tractable form using body frame quantities.

Fig. 1.16 The motion of a set of particles that appear to be fixed with respect to the moving frame b.

Let e be an inertial frame with origin O and and let b(t) be an ortho-normal frame with
origin O′ in which all the particles Pi appear to be fixed as illustrated for example in figure
1.16. We will call b(t) the body frame. Let OO′ = eo(t). The position of the ith point Pi at a
time t, is given by xi(t) with respect to the frame e and by Xi with respect to the body frame
b(t). Observe that since all points on the body appear to be fixed with respect to the body
frame b(t), the representation Xi is independent of time. Therefore specifying b(t) amounts
to specifying the configuration of the rigid body. Since b(t) is uniquely related to the inertial
frame e by the rotational matrix R(t), where b(t) = eR(t), and the position of its origin o(t),
the specification of (o(t),R(t)) amounts to the unique specification of the configuration of
the rigid body with respect to the inertial frame e. Similarly any (o,R) where o ∈ R3 and
R ∈ SO(3) defines a unique configuration of the rigid body. Thus the configuration space of
rigid body motion is R3×SO(3) where we have denoted the space of 3×3 special orthogonal
matrices by SO(3). Recall that it was shown in section-1.2.2 that the space SO(3) is a three
dimensional space and hence it follows that a rigid body has 6 DOF. Also recall that the
quantity Ω where Ω̂ = RT Ṙ corresponds to an instantaneous rotation of the body about the
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axis Ω as expressed in the body frame b by an amount equal to the magnitude ||Ω || and thus
that Ω can be defined to be the body angular velocity of the rigid body. The e frame version
of this quantity ω , RΩ is defined to be the spatial angular velocity of the rigid body.

In section 1.1.4 we decomposed the force acting on a particle to two components: the force
due to external interactions f e

i and the force acting on i due to its interaction with j that is
given by fi j. That is fi = f e

i +∑
n
j 6=i fi j. Since all mutual interactions are equal and opposite

we also have f ji = − fi j and hence that the resultant of all the forces acting on the particles
satisfy ∑

n
i=1 fi = ∑

n
i=1 f e

i = f e and that the total moment of the forces fi about the origin O′ of
the body fixed frame b satisfy ∑

n
i=1 τi = ∑

n
i=1(xi−o)× f e

i = τe. Here f e is the total resultant
of the external forces acting on the particles and τe is the total resultant of the moments of the
external forces acting on the particles about point O′.

Recall from section 1.1.4 that

ṗ = M ¨̄x = f e, (1.54)
π̇ =−Mȯ× ˙̄x+ τe (1.55)

where M = ∑
n
i=1 mi is the total mass of the particles, p = ∑

n
i=1 pi is the total linear momentum

of the system of particles, π = ∑
n
i=1 πi is the total angular momentum of the particles about

the origin O′ of the body fixed frame and x̄ is the representation of the center of mass of the
set of particles in the inertial frame e.

Since xi(t) = o(t)+R(t)Xi we see that

x̄(t) = o(t)+R(t)X̄ , (1.56)

where

X̄ ,
∑

n
i=1 miXi

∑
n
i=1 mi

,

is the center of mass of the body expressed with respect to the body fixed frame b. Differenti-
ating this expression we have

˙̄x = ȯ+RΩ̂(t)X̄ , (1.57)

¨̄x = ö+R(Ω̂ 2(t)+ ˙̂
Ω(t))X̄ . (1.58)

Thus we see that (1.54) can alternatively be written by

MRT ö+M
(

Ω̂
2(t)+ ˙̂

Ω(t)
)

X̄ = RT f e , Fe. (1.59)

Here Fe = RT f e is the body frame b representation of the total resultant external forces acting
on the particles. If one chooses the origin O′ of the body frame to coincide with the center of
mass of the collection of particles then X̄ = 0 and the equation (1.59) reduces to

Mö = f e. (1.60)

What this equation tells us is that the center of mass of the collection of particles moves
as if it is a particle of mass M = ∑

n
i=1 mi that is acted upon by the resultant external force

f e = ∑
n
i=1 f e

i .
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Clearly this does not describe the motion of the collection of particles as we know that there
exists a rotational motion of the particles about its center of mass as well. This is captured by
(1.55). Similar to the case of rate of change of total linear momentum given by (1.59) we show
below that rate of change of total angular momentum also has an equivalent representation in
terms of the body frame b quantities.

Since Xi is a constant, from (1.34) – (1.36) we see that for the ith particle of the body the
angular momentum and its derivative becomes

πi = R
(
IiΩ +miXi×RT ȯ

)
. (1.61)

IiΩ̇ = IiΩ ×Ω −miXi×RT ö+Xi×RT fi, (1.62)

where Ii , mi
(
||Xi||2I3×3−XiXT

i
)

is the moment of inertia of the particle about O′. Summing
the above expressions over all the particles and using the fact that fi = f e

i +∑
n
j 6=i fi j with

f ji =− fi j we have

π = R
(
IΩ +MX̄×RT ȯ

)
. (1.63)

IΩ̇ = IΩ ×Ω −MX̄×RT ö+T e. (1.64)

where

T e ,
n

∑
i=1

Xi×RT f e
i = RT

(
n

∑
i=1

(xi−o)× f e
i

)

is the total resultant moment acting on the body about O′ due to the external interaction of the
particles of the body and

I,
n

∑
i=1

Ii =
n

∑
i=1
−miX̂2

i =
n

∑
i=1

mi
(
||Xi||2I3×3−XiXT

i
)
,

is defined to be the moment of inertia tensor of the body. It is easy to see that the moment of
inertia tensor I is symmetric and positive definite22.

Note that if O is fixed then ȯ = 0 and thus we can conclude that for rigid bodies pivoted
at a point O the rotational motion of the rigid body is governed by

IΩ̇ +Ω × IΩ = T e, (1.65)

where T e , RT τe is the resultant moment about the pivot point due to the external inter-
action effects acting on the particles.

For bodies that are also free to rotate and translate the expression (1.59) and (1.64) give that

IΩ̇ +Ω × IΩ + X̄×
(
−M

(
Ω̂

2(t)+ ˙̂
Ω(t)

)
X̄ +Fe

)
= T e.

22 In exercise-3.30 you are asked to show this.
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This results in

IcΩ̇ +Ω × IcΩ =−X̄×Fe +T e, (1.66)

where

Ic , I+M ̂̄X2

is the inertia tensor of the body with respect to a frame that is parallel to b and origin co-
inciding with the center of mass of the object23 Oc, and T e is the resultant moment of the
external forces about the origin O′ of the body frame b. Let oc be the representation of the
center of mass of the body with respect to the inertial frame e. Thus τe

c = ∑
n
i=1(xi−oc)× f e

i
is the resultant moment of the external forces about the center of mass of the rigid body. Note
that X̄ = RT (oc−o). Thus we have

τ
e =

n

∑
i=1

(xi−o)× f e
i =

n

∑
i=1

(xi−oc +oc−o)× f e
i = τ

e
c +RX̄× f e = τ

e
c +R(X̄×Fe).

Then we have that (1.66) becomes

IcΩ̇ +Ω × IcΩ = T e
c .

Note that these equations are equivalent to (1.55). In summary:

The expression Ṙ = RΩ̂ , equation (1.59) and the above equation describe the evolution
of o(t) and R(t) if the external interaction force, f e

i , acting on particle i is known and
hence completely describe the motion of the collection of the interacting rigid body par-
ticles P1,P2, · · · ,Pn. These equations are re-stated below explicitly for the convenience of
presentation

Ṙ = RΩ̂ , (1.67)

IcΩ̇ = IcΩ ×Ω +T e
c , (1.68)

Mö =−M R
(

Ω̂
2(t)+ ˙̂

Ω(t)
)

X̄ + f e, (1.69)

where T e
c , −X̄ ×Fe +T e is the b-frame representation of the resultant moments act-

ing on the body with respect to the center of mass of the body and f e is the e-frame
representation of the resultant of the external forces acting on the body.

1.3.1 Euler’s Rigid Body Equations

In this section we restrict to the case where the body frame b is chosen such that its origin O
coincides with the center of mass the body, angular momentum and the equations that describe

23 When written as I= Ic−M ̂̄X2
this turns out to be the parallel axis theorem.
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the motion of the body (1.67) – (1.69) take a particularly simple form. In this case X̄ = 0. Then
the total linear momentum of the system of particles, expressed in the e frame is

p =
N

∑
i=1

miẋi = M(ȯ+Ω × X̄) = Mȯ,

and hence that the Newton’s equation (1.69) reduces to Mö = f e(t). Notice that Vo , RT ȯ is
the b frame representation of the velocity of the center of the frame b with respect to the frame
e.

What also follows immediately is that the rate of change of total angular momentum of the
body given by (1.55) becomes π̇ = τe. Furthermore from (1.63) we find that π = RIΩ and
hence that the body frame version of the total angular momentum is given by Π = IΩ . Since
ω , RΩ is the inertial frame e version (the spatial version) of the angular velocity of the rigid
body we have that π = RΠ = RIΩ = (RIRT )ω . The quantity IR , RIRT is defined to be the
locked inertia tensor of the body. We also see that in terms of the spatial angular velocity;
Ṙ = RΩ̂ = RRT ω̂R = ω̂R.

Thus, when the angular momentum and the moment of the forces are taken with respect
to the center of mass O′ of the body, we have that the motion of the set of particles
comprising the rigid body takes the very simple form in the inertial frame e

Ṙ = ω̂R, (1.70)

ȯ =
1
M

p, (1.71)

π̇ = τ
e, (1.72)

ṗ = f e, (1.73)

where ω = (RI−1RT )π . Notice that these equations are expressed entirely using the iner-
tial frame e representations. When the body frame b is fixed at the center of mass of the
object then from (1.67) – (1.69) we have that (1.70) – (1.73) take the equivalent form

Ṙ = RΩ̂ , (1.74)
ȯ = RVo, (1.75)

IΩ̇ = IΩ ×Ω +T e, (1.76)
MV̇o =−MΩ ×Vo +Fe. (1.77)

These body fixed frame b representation of (1.70) – (1.73) are commonly referred to as
Euler’s Rigid Body equations in the body fixed frame b.

Noting that Π = IΩ we see that Euler’s equation for rigid body rotations (1.76) can also be
written in the equivalent form

Π̇ = Π × I−1
Π +T e. (1.78)
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It is important to note that, since Π = IΩ , in general the direction of the body angular
momentum does not coincide with the direction of the body angular velocity. For a rigid
body that is moving freely in space (ie. isolated from the rest of the universe) we have
seen that the total spatial angular momentum π is always constant. However, we note
that, since Π = RT π the body angular momentum, Π , is not conserved. Nevertheless
since ||Π || = ||RT π|| = ||π|| we see that the magnitude of the body angular momentum
is still conserved.

When the set of particles of the rigid body are not isolated from the rest of the universe we
find that

d
dt
||Π(t)||= d

dt

√
IΩ · IΩ =

IΩ · IΩ̇√
IΩ · IΩ

=
IΩ · (IΩ ×Ω +T e)√

IΩ · IΩ
=

Π ·T e

||Π ||
, (1.79)

where the last equality follows from A · (A×B) = 0.
Let us take a close look at equation (1.76) and (1.78) that describe the evolution of the total

angular momentum of the set of particles in the inertial frame e. Since the moment of inertia
tensor is always symmetric and positive definite it is always possible to find a body frame b
such that the Inertia tensor I is diagonalized. For instance in an axi-symmetric rigid body if
the body frame b is aligned along the axes of symmetry then it can be shown that the inertia
matrix I is diagonal. The diagonal elements are called the principle moments of inertia. Let
the body frame b be chosen such that the inertia tensor is diagonalized

I=

 I1 0 0
0 I2 0
0 0 I3

 , (1.80)

where the principle moments of inertia are given by I1,I2,I3. Based on the values of the
principle moments of inertia one can classify rigid bodies into three distinct categories:

(a) Asymmetric Rigid Body: I1 > I2 > I3
(b) Axi-Symmetric Rigid Body: I1 = I2 > I3 or I1 > I2 = I3
(c) Symmetric Rigid Body: I1 = I2 = I3

When the body frame b coincides with the directions of the principle moments of inertia of
the object, the rotation dynamics (1.76) take the form

I1Ω̇1 = (I2− I3)Ω2Ω3 +T e
1 , (1.81)

I2Ω̇2 = (I3− I1)Ω3Ω1 +T e
2 , (1.82)

I3Ω̇3 = (I1− I2)Ω1Ω2 +T e
3 , (1.83)

while (1.78) takes the form

Π̇1 =
(I2− I3)

I2I3
Π2Π3 +T e

1 , (1.84)
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Π̇2 =
(I3− I1)

I3I1
Π3Π1 +T e

2 , (1.85)

Π̇3 =
(I1− I2)

I1I2
Π1Π2 +T e

3 . (1.86)

Let us investigate the rate of change of the Magnitude of the Body Angular Momentum
Π = IΩ :

d
dt
||Π(t)||= d

dt

√
IΩ · IΩ =

IΩ · IΩ̇√
IΩ · IΩ

=
IΩ · (IΩ ×Ω +T e)√

IΩ · IΩ
=

Π ·T e

||Π ||
, (1.87)

where the last equality follows from A · (A×B) = 0.

Thus we conclude that for an isolated rigid body π and ||Π || remain a constant or in
other words are conserved quantities of the motion. Notice that this too is a consequence
of the principle of conservation of linear momentum.

Notice that the expression of these equations do not require the parameterization of when
the forces and moments have fixed directions in the body. Even if this is not the case one
can resort to unit quaternions and avoid running into the difficulty of singularities that are
inherent to the use of Euler angles. Nevertheless for completeness we will write down Euler’s
rigid body rotational equatios using the 3-1-3 Euler angles presented in section 1.4.2.2. From
1.131

Π = IΩ =

I1
(
θ̇1 sinθ2 sinθ3 + θ̇2 cosθ3

)
I2
(
θ̇1 sinθ2 cosθ3− θ̇2 sinθ3

)
I3
(
θ̇1 cosθ2 + θ̇3

)
 .

From (1.133) we have

IΩ̇ =

I1
(
θ̈1 sinθ2 sinθ3 + θ̇1θ̇2 cosθ2 sinθ3 + θ̇1θ̇3 sinθ2 cosθ3 + θ̈2 cosθ3− θ̇2θ̇3 sinθ3

)
I2
(
θ̈1 sinθ2 cosθ3 + θ̇1θ̇2 cosθ2 cosθ3− θ̇1θ̇3 sinθ2 sinθ3− θ̈2 sinθ3− θ̇2θ̇3 cosθ3

)
I3
(
θ̈1 cosθ2− θ̇1θ̇2 sinθ2 + θ̈3

)
 .

Thus from (1.134) – (1.136) we have the messy equations

I1 sinθ2 sinθ3 θ̈1 + I1 cosθ3 θ̈2 =−I1
(
θ̇1 θ̇2 cosθ2 sinθ3 + θ̇1 θ̇3 sinθ2 cosθ3− θ̇2 θ̇3 sinθ3

)
+(I2− I3)

(
θ̇1 sinθ2 cosθ3− θ̇2 sinθ3

)(
θ̇1 cosθ2 + θ̇3

)
+T e

1

I2 sinθ2 cosθ3 θ̈1− I2 sinθ3 θ̈2 =−I2
(
θ̇1 θ̇2 cosθ2 cosθ3− θ̇1 θ̇3 sinθ2 sinθ3− θ̇2 θ̇3 cosθ3

)
+(I3− I1)

(
θ̇1 cosθ2 + θ̇3

)(
θ̇1 sinθ2 sinθ3 + θ̇2 cosθ3

)
+T e

2

I3 cosθ2 θ̈1 + I3 θ̈3 = I3 θ̇1 θ̇2 sinθ2 +(I1− I2)
(
θ̇1 sinθ2 sinθ3 + θ̇2 cosθ3

)(
θ̇1 sinθ2 cosθ3− θ̇2 sinθ3

)
+T e

3

1.3.2 Kinetic Energy of a Rigid Body

Recall that in section-1.2.4 we showed that (1.38) gives the kinetic energy of a particle Pi in
the frame b by
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KEi =
1
2

(
m||Vo||2 +2miV T

o Ω̂Xi +Ω
T IiΩ

)
,

where

Ii , mi
(
||Xi||2I3×3−XiXT

i
)

was termed the moment of inertia of the particle Pi about the origin of the frame b.
For a set of particles where the relative distance between any two particles remain the same

(what we call a rigid body) as viewed in a frame b (what we will call a frame fixed to the rigid
body) the total kinetic energy of all the particles are then given by summing up the above
expression over all the particles we have,

KE =
1
2 ∑

p∈B

(
m||Vo||2 +2mV T

o Ω̂Xi +Ω
T IiΩ

)
,

=
1
2

(
M||Vo||2 +2V T

o Ω̂ ∑
p∈B

(mXi)+Ω
T IΩ

)

=
1
2

(
M||Vo||2 +2MV T

o Ω̂ X̄ +Ω
T IΩ

)
(1.88)

where M = ∑
n
i=1 mi is the total mass, I= ∑

n
i=1 Ii is the total moment of inertia of the body and

X̄ is the representation of the center of mass of the body in the body frame b. Notice that in
the special case where the body fixed frame b is fixed at the center of mass of the rigid body
we have that X̄ = 0 and hence that the following holds.

If the origin of a body fixed frame of a rigid body is fixed at the center of mass of the
rigid body then the kinetic energy of the rigid body with respect to an inertial frame e is
given by

KE =
1
2
(
M||Vo||2 +Ω

T IΩ
)
=

1
2
(
M||ȯ||2 +Ω

T IΩ
)
, (1.89)

where the body frame b is related to the inertial frame e in such a way that b= eR and the
origin of b has the representation o with respect to the inertial frame e. Furthermore in
the second equality we have also used the fact that ȯ = RVo and hence that ||Vo||= ||ȯ||.
What this says is that the kinetic energy of a rigid body is equal to the sum of its rotational
kinetic energy and the center of mass kinetic energy with respect to a frame b that is fixed
on the body with center coinciding with the center of mass of the body.

Let us now consider the rate of change of kinetic energy of a rigid body:

d
dt

KE =
1
2
(
MȯT ö+MöT ȯ+ Ω̇

T IΩ +Ω
T IΩ̇

)
= MȯT ö+Ω

T IΩ̇

= ȯ ·Mö+Ω · IΩ̇ = ȯ · f e +Ω · (IΩ ×Ω +T e)

= ȯ · f e +Ω ·T e (1.90)

54



Lecture notes by D. H. S. Maithripala, Dept. of Mechanical Engineering, University of Peradeniya

Where the last equality Ω · (IΩ ×Ω +T e) = Ω ·T follows from the easily verifiable property
of cross products and dot products A · (A×B) = 0. What this says is that the rate of change
of kinetic energy of a rigid body is equal to the input power of the system given by ȯ · f e +
Ω · T . Thus if there are no external forces acting on the particles of the rigid body (that is
if we assume that the interactions that the particles of the rigid body have with the rest of
the Universe is negligible) then the power is zero and the kinetic energy of the rigid body is
conserved.

Example: Kinetic Energy of a Falling and Rolling Disk

Let b be a frame fixed on the disk and let e be an Earth fixed frame. The rotation matrix R
that relates the two frames by, b = eR, can be parameterized using the 3-1-2 Euler angles
R = R3(θ)R1(α)R2(φ) and thus

R =


cosθ cosφ − sinθ sinα sinφ −sinθ cosα cosθ sinφ + sinθ sinα cosφ

sinθ cosφ + cosθ sinα sinφ cosθ cosα sinθ sinφ − cosθ sinα cosφ

−cosα sinφ sinα cosα cosφ


Calculating Ω̂ = RT Ṙ we have that the body angular velocities of the coin are given by:

Ω1 = α̇ cosφ − θ̇ cosα sinφ , (1.91)
Ω2 = φ̇ − θ̇ sinα, (1.92)
Ω3 = θ̇ cosα cosφ + α̇ sinφ . (1.93)

The velocity of the center of mass of the disk expressed in the e-frame is

ȯ =

 ẋ
ẏ

−rα̇ sinα


Let I = diag(Ii,Ir,Ii) be the moment of inertia tensor of the disk and M be the mass of the
disk. Then the kinetic energy of the falling rolling disk is

KE =
1
2
(
M||ȯ||2 + IΩ ·Ω

)
=

1
2
(
Mẋ2 +Mẏ2 + Irφ̇

2 +(Ii +Mr2 sin2
α)α̇2 +(Ii cos2

α + Ir sin2
α)θ̇ 2−2Irφ̇ θ̇ sinα

)
.

Example: Kinetic Energy of a A 3-DOF Robot Arm

Let e,a,b,c be three orthonormal frames such that e is earth fixed at the point O1, origin of
a is at O1 and a = eRa, origin of b is at O1 and b = aRb, and origin of c is at O2 (the pivot
point of links 1 and 2) and c = bRc. Let G1,G2 be the center of mass of the two linkages. Let
O1G1 = bXg1 and O2G2 = cXg2 . Let O1O2 = bXo2 and Let O2P = cXcp. Let O1P = exp.
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Fig. 1.17 A schematic representation of 3-DOF robot arm.

Ra = R3(α),Rb = R1(θ),Rc = R1φ , Xg1 = [0 L2 0]T , Xg2 = [0 L4 0]T , Xo2 = [0 L1 0]T and
Xcp = [0 L3 0]T . Then

exp = bXo2 + cXP

xp = RL1 Xo2 +RL2 Xcp

where RL1 = RaRb and RL2 = RaRbRc.

xg1 = RL1Xg1

xg2 = RL1 Xo2 +RL2Xg2

ṘL1 = RL1Ω̂L1

ṘL2 = RL2Ω̂L2

ẋg1 = RL1Ω̂L1Xg1

ẋg2 = RL1Ω̂L1Xg1 +RL2Ω̂L2Xg2

ẋg1 =

 L2θ̇ sin(α)sin(θ)−L2α̇ cos(α)cos(θ)
−L2α̇ sin(α)cos(θ)−L2θ̇ cos(α)sin(θ)

L2θ̇cos(θ)


ẋg2 =

 θ̇ sin(α)(L4 sin(φ +θ)+L1 sin(θ))− α̇ cos(α)(L4 cos(φ +θ)+L1 cos(θ))+L4φ̇ sin(φ +θ)sin(α)
−α̇ sin(α)(L4 cos(φ +θ)+L1 cos(θ))− θ̇ cos(α)(L4 sin(φ +θ)+L1 sin(θ))−L4φ̇ sin(φ +θ)cos(α)

θ̇(L4 cos(φ +θ)+L1 cos(θ))+L4φ̇ cos(φ +θ)


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Ω̇L1 =

 θ̇

α̇ sin(θ)
α̇ cos(θ)

 Ω̇L2 =

 φ̇ + θ̇

α̇ sin(φ +θ)
α̇ cos(φ +θ)


The the kinetic energy of the robotic arm is given by

KE =
1
2

M1||ẋg1||
2 +

1
2

M2||ẋg1 ||
2 +

1
2
IL1ΩL1 ·ΩL1 +

1
2
IL2ΩL2 ·ΩL2,

where IL1 and IL2 are the inertia tensors of the two links in their respective body frames fixed
at their center of masses and parallel to b and c respectively.

1.3.3 Free Rigid Body Motion

In this section we will analyze the dynamics (the evolution over time) of a free rotating rigid
body. What we mean by free is that no external force moments are present. That is T = 0. We
have seen that it is always possible to pick a body frame b such that the resulting moment of
inertia tensor I is diagonal. Thus, in what follows, without loss of generality we will consider
b to be such a frame.

When T = 0 we have also seen that the Kinetic Energy KE, the spatial angular momentum,
π , and the magnitude of the body angular momentum, ||Π ||, are conserved. That is for free
rigid body rotations when we have that:

π(t) = R(t)

 I1Ω1
I2Ω2
I3Ω3

= R(t)

Π1
Π2
Π3

= π = constant 3×1 matrix, (1.94)

KE =
1
2
(I1Ω

2
1 + I2Ω

2
2 + I3Ω

2
3 ) =

1
2

(
Π 2

1
I1

+
Π 2

2
I2

+
Π 2

3
I3

)
= E = constant, (1.95)

||Π(t)||2 = I2
1Ω

2
1 + I2

2Ω
2
2 + I2

3Ω
2
3 = Π

2
1 +Π

2
2 +Π

2
3 = h2 = constant. (1.96)

Notice that the above conservation laws are more conveniently represented using the body
angular momenta Π . Thus we will consider the free rotational rigid body equations in the
body angular momentum variables given by

Ṙ = R Î−1Π , (1.97)
Π̇ = Π × I−1

Π . (1.98)

In a frame b where the inertia tensor I is diagonal we have seen that these equations take the
form

Π̇1 =
(I2− I3)

I2I3
Π2Π3, (1.99)
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Π̇2 =
(I3− I1)

I3I1
Π3Π1, (1.100)

Π̇3 =
(I1− I2)

I1I2
Π1Π2. (1.101)

From these equations we see that Π(t) ≡ µ1 , h[1 0 0]T , Π̄(t) ≡ µ2 , h[0 1 0]T , and
Π̄(t)≡ µ3 , h[0 0 1]T where h = ||Π || are equilibrium solutions of the rigid body equa-
tions (1.99) – (1.101). Such solutions are called relative equilibria of motion. Since
Ω = I−1Π we see that these relative equilibria correspond to steady rotations of the
body about its three principle axis.

Equation (1.95) defines an ellipsoid, called the energy ellipsoid, in the body angular mo-
mentum space and (1.96) defines the surface of a sphere, called the angular momentum sphere,
in body angular momentum space. Conservation of kinetic energy implies that the solutions of
(1.99) – (1.101) must lie on the energy ellipsoid and the conservation of the magnitude of the
body angular momentum implies that the solutions of (1.99) – (1.101) must lie on the angular
momentum sphere.

Thus we conclude that the solutions of (1.99) – (1.101) correspond to the intersection
curves of the corresponding angular momentum sphere with the energy momentum el-
lipsoid.

It should be pointed out that a solution being periodic in angular momentum Π space
does not imply that the corresponding motion of the rigid body is also periodic. To see
this consider the following. Let τ be the periodicity of the solution in Π space. That is
Π(τ) =Π(0). Then from the conservation of spatial angular momentum, π(t)≡ µ a constant,
we have that RT (0)µ = Π(0) = Π(τ) = RT (τ)µ and hence µ = R(τ)RT (0)µ . Thus we see
that R(τ)RT (0) = Rµ is a rotation about the µ axis24 and hence that in general R(τ) 6= R(0).
We can write

R(τ)RT (0) = exp(θ n̂) (1.102)

where n = µ/||µ||. The rotation angle θ of R(τ)RT (0) about µ is called the phase of the
rotation.

It is interesting to note that

KE = Π(t) ·Ω(t) = π(t) ·ω(t) = µ ·ω(t) = constant. (1.103)

Thus the angle between the angular velocity and the constant angular momentum remains
constant through out the motion. What one can observe is the motion of body fixed directions.
Let ϒ be some such body fixed direction. For instance it could be the third principle direction
of the body. We are interested in visualizing how the body moves with respect to the fixed

24 Recall that if R is a rotation about the axis with representation µ in the spatial frame then Rµ = µ .
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spatial angular momentum direction. That is we would like to know how Rϒ is related to
π . Since µ ·Rϒ = RΠ ·Rϒ = Π ·ϒ we see that, when observed in the spatially fixed frame
e, the angle that the body fixed ϒ axis of the rigid body makes with the constant spatial
angular momentum vector µ is equal to the angle that this axis makes with the body angular
momentum Π .

This angle

α(t) = cos−1
(

ϒ ·Π
h

)
, (1.104)

between the body fixed axis ϒ and the constant spatial angular momentum π is defined
as the angle of nutation of the axis ϒ .

The nature of the intersection curves obviously depend on the the three principle moments
of inertia {I1,I2,I3}. For instance in the case of a perfectly spherical object, I1 = I2 = I3,
and as such the energy ellipsoid is also a sphere. Thus the intersection curves in this case
degenerate to points on the sphere and all trajectories correspond to steady rotations about
some axis. This is also evident from (1.99) – (1.101) since we see that they reduce to Π̇ = 0.
On the other hand if I1 > I2 = I3, as in the case of an axi-symmetric object such as a disk,
the intersection curves are concentric ellipses and fixed points. The fixed points correspond
to relative equilibria while the other intersection curves correspond to periodic orbits in body
angular momentum space. We notice that in this case there exists two isolated relative equi-
librium corresponding to the two poles of the energy ellipsoid along the major axis direction
and continuum of relative equilibria coinciding with the minor circle of the energy ellipsoid.
Notice that the two isolated relative equilibria are stable while the ones along the minor axis
are all unstable. The same conclusions apply for a thin cylinder type axi-symmetric objects
where I1 = I2 > I3.

Figure 1.18 shows the intersection of an energy ellipsoid with two constant angular momen-
tum spheres for the case more general case where I1 > I2 > I3. The two spheres are depicted
in pink and light blue color. The radius of the pink sphere is greater than

√
2I2E while the

radius of the light blue sphere is less than
√

2I2E. The blue curve depicts the critical case
where the radius of the sphere is equal to

√
2I2E and these four intersection curves are not

closed curves.
Using the above discussion let us investigate the qualitative behavior of a rigid body for a

particular constant magnitude of the angular momentum sat ||Π ||= h. Figure 1.19 shows the
intersection curves of different energy ellipsoids corresponding to different energy levels with
angular momentum sphere ||Π || = h. From this we see that the two relative equilibria corre-
sponding to the body spinning along the major and minor principle axis are stable while the
other relative equilibrium corresponding to the body spinning along the intermediate principle
axis is unstable. All other trajectories except the four ones corresponding to the critical case
are periodic trajectories in the body angular momentum space.

Since the trajectories in the body angular momentum space correspond to the intersection
curves of the energy ellipsoid and the body angular momentum ellipsoid the trajectories can
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Fig. 1.18 The intersection of an energy ellipsoid with three constant angular momentum spheres is
shown in the bottom figure for the case where I1 > I2 > I3. The three spheres are depicted by pink,
blue, and light blue. The radius of the pink sphere is greater than

√
2I2E while the radius of the light

blue sphere is less than
√

2I2E. The blue curve depicts the critical case where the radius of the sphere
is equal to

√
2I2E.

be explicitly written down or in other words the system of equations (1.99) – (1.101) are
completely integrable. In the section below we find these analytical solutions for the free rigid
body rotations.

1.3.4 Analytic Solutions of Free Rigid Body Rotations

Let us first consider the more general asymmetric rigid body, I1 > I2 > I3. From the two
conservation laws (1.95) and (1.96) we have that

Π
2
1 = α21−β21Π

2
2 , (1.105)

Π
2
3 = α23−β23Π

2
2 , (1.106)
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Fig. 1.19 The figure shows several intersection curves of different energy ellipsoid with a fixed con-
stant angular momentum sphere.

where

α21 =
I1(h−2EI3)

I1− I3
, α23 =

I3(h−2EI1)

I3− I1

and

β21 =
I1(I2− I3)

I2(I1− I3)
, β23 =

I3(I2− I1)

I2(I3− I1)
.

Let 2EI3 < h < 2EI1. Then both α21 > 0 and α23 > 0. Since without loss of generality we
have assumed that I1 > I2 > I3 then β21 > 0 and β23 > 0.

Using these (1.100) can be written as

Π̇2 =
(I1− I3)

I1I3

√
(α21−β21Π 2

2 )(α23−β23Π 2
2 ).

Using the variable transformation

u ,

√
β21

α21
Π2,

ω ,
√

β21α23

(
I1− I3

I1I3

)
=

√
(I2− I3)(2EI1−h)

I1I2I3

and

k2 ,
α21β23

α23β21
=

(I1− I2)(h−2EI3)

(I2− I3)(2EI1−h)

this reduces to
u̇ = ω

√
(1−u2)(1− k2u2).
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This can be explicitly integrated using quadrature as follows:∫ 1√
(1−u2)(1− k2u2)

du =
∫

ω dt = ωt + c.

The left hand side of the above integral is the inverse of the Jacobi elliptic function sn of
modulus k where 0≤ k ≤ 1,

sn−1(u) =
∫ u

0

1√
(1−u2)(1− k2u2)

du.

Thus we have
u(t) = sn(ωt + c),

and hence

Π2(t) =

√
I2(h−2EI3)

(I2− I3)
sn(ωt + c). (1.107)

From (1.105) and (1.106) we have that

Π
2
1 = α21(1−u2) = α21(1− sn2(ωt + c)) = α21cn2(ωt + c),

Π
2
3 = α23(1− k2u2) = α23(1− k2sn2(ωt + c)) = α23dn2(ωt + c),

and hence

Π1(t) =

√
I1(h−2EI3)

I1− I3
cn(ωt + c), (1.108)

Π3(t) =

√
I3(2EI1−h)

I1− I3
dn(ωt + c). (1.109)

Jacobi Elliptic functions sn and cn are periodic functions of period 4K and dn is periodic
of period 2K, where

K(k) = sn−1(1) =
∫ 1

0

1√
(1−u2)(1− k2u2)

du =
∫

π/2

0

1√
1− k2 sin2

ψ

dψ ≈
(

1+
k2

4

)
π

2
.

Thus Π1(t),Π2(t),Π3(t) are periodic of period

T = 4K(k)/ω =
2π

ω

(
1+

k2

4
+H.O.T.

)
≈ 2π

√
I1I2I3

(2EI1−h)(I2− I3)

(
1+

(I1− I2)(h−2EI3)

4(I2− I3)(2EI1−h)

)
.

Thus confirming that Π(t) is periodic of period T . However recall that the motion of the rigid
body is not periodic!!!
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(a) (b)

Fig. 1.20 Components of the angular momentum vector Π(t) for the Non-Aix-Symmetric Rigid Body.
I= diag[3,2,1]. Figure (a) corresponds to an initial condition of Π(0) = [0.6,−1,2] thus a k = 0.2951
and T = 5.4. Figure (b) corresponds to an initial condition of Π(0) = [3,−1,2] thus k = 0.88 and
T = 7.34.

Fig. 1.21 The motion of the tip of the minor axis for the asymmetric rigid body with I = diag[3,2,1]
and an initial conditions Π(0) = [0.6,−1,2].

Figure 1.20 shows the simulation results of for an asymmetric rigid body of I= diag[3,2,1].
Let us explicitly compute the nutation angle α(t) between the body fixed axis ϒ = [0 0 1]T

and the constant spatial angular momentum π that is given by (1.104) to be

α(t) = cos−1
(

ϒ ·Π
h

)
= cos−1

(
Π3

h

)
= cos−1

(√
I3(2EI1−h)
h2(I1− I3)

dn(ωt + c)

)
. (1.110)

Figure 1.21 shows the The motion of the tip of the minor axis for the asymmetric rigid body
with I= diag[3,2,1] and initial conditions Π(0) = [0.6,−1,2].
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1.3.5 Axi-symmetric Rigid Body

For an axi-symmetric rigid body, I1 = I2 > I3. Then we see that k = 0 and hence that the
elliptic functions reduce to the trigonometric functions (sn→ sin, cn→ cos, dn→ 1). Thus
we have

ω =

√
(2EI1−h)(I2− I3)

I1I2I3
,

and

Π1(t) =

√
I1(h−2EI3)

I1− I3
cos(ω t + c), (1.111)

Π2(t) =

√
I2(h−2EI3)

(I2− I3)
sin(ω t + c), (1.112)

Π3(t) =

√
I3(2EI1−h)

I1− I3
= constant. (1.113)

The body angular momentum Π(t) is periodic of period

Fig. 1.22 Components of the angular momentum vector Π(t) for the Symmetric Rigid Body. I =
diag[2,2,1] and Π(0) = [0.4,−1,2]. The period of oscillation is T = 6.23.

T = 2π

√
I1I2I3

(2EI1−h)(I2− I3)
.

Consider the minor axis of symmetry of the body ϒ = [0 0 1]T (as represented in the body
frame). The angle between the body angular momentum and the minor axis of symmetry of
the body (angle of nutation of the minor axis) is given by,
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α = cos−1
(

ϒ ·Π
h

)
= cos−1

(
Π3

h

)
= cos−1

(√
I3(2EI1−h)
h2(I1− I3)

)
= constant

and is a constant.
Figure 1.22 shows the simulation results of an symmetric rigid body of I= diag[2,2,1] and

an initial condition of Π(0) = [0.6,−1,2]. The motion of the tip of the angular momentum
vector as observed in the body co-ordinates for the symmetric Rigid Body is shown in figure
1.23.

Fig. 1.23 The motion of the tip of the minor axis for a symmetric rigid body with I= diag[2,2,1] and
an initial conditions Π(0) = [0.6,−1,2].

The motion of the tip of the minor axis for a symmetric rigid body with I = diag[2,2,1] and
an initial conditions Π(0) = [0.6,−1,2] is shown in figure 1.23.

1.3.6 The Axi-symmetric Heavy Top in a Gravitational Field

In this section we consider the axi-symmetric top in a gravitational field. The pivot point is
along the axis of symmetry. The distance from the pivot point to the center of mass is l. Then
the force moment about the pivot point due to gravity is T = mgl (RTϒ )×ϒ where ϒ is the
direction of gravity as observed in the e frame. Thus from (1.65) the equations of motion for
the heavy top are

Ṙ = RΩ̂ , (1.114)
IΩ̇ = IΩ ×Ω +mgl (RT

ϒ )×ϒ . (1.115)

To implement (1.116) and (1.117) we need to parameterize the rotation matrix R(t). Let a be
a fixed frame and b be a frame fixed on the top as shown in figure 1.24. The configuration of
the top is given by the rotation matrix R where b(t) = aR(t). Using intermediate frames a′(t)
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Fig. 1.24 The Axi-symmetric Heavy Top. Figure copied from [8].

and f(t) we can parameterize R(t) using the 3-1-3 Euler angles as follows. As shown in the
figure we have that

a′(t) = aR3(φ), f(t) = a′(t)R1(θ), b(t) = f(t)R3(ψ),

Then if b(t) = aR(t)
R(t) = R3(φ)R1(θ)R3(ψ).

In this parameterization φ is called the angle of precession, θ is called the angle of nutation,
and ψ is called the angle of spin.

It is interesting to note that if we let Γ (t) = RT ϒ (the direction of gravity as seen in the
body frame) and differentiate it we can replace (1.116) and (1.117) by the equivalent set of
equations,

Γ̇ = Γ ×Ω , (1.116)
IΩ̇ = IΩ ×Ω +mgl Γ ×ϒ . (1.117)

Observe that they remove the need for Euler angles.
It can be shown that the following quantities are conserved along the solutions of the sys-

tem.

KE =
1
2
(I1Ω

2
1 + I2Ω

2
2 + I3Ω

2
3 )+mgl Γ

T
ϒ =

1
2

(
Π 2

1
I1

+
Π 2

2
I2

+
Π 2

3
I3

)
+mgl Γ3,(1.118)

Π
T

Γ = Π1Γ1 +Π2Γ2 +Π3Γ3, (1.119)
||Γ ||2 = Γ

2
1 +Γ

2
2 +Γ

2
3 . (1.120)
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A heavy top for which I1 = I2 is called a Lagrange top. An upright spinning Lagrange top
is stable if and only if ||Ω ||> 2

√
MglI1/I3 (see Section 15.10 of [5] for further details).

1.4 The Space of Rotations SO(3)

Up to now we have seen that much about rigid body motion can be understood without explic-
itly having to worry about the rotational kinematics Ṙ=RΩ̂ . This is so because in all the cases
we have considered so far the external moments are independent of the rotations. In general
this is not so. Furthermore even in these cases where the external moments do not depend on
the configuration of the body we are still interested in keeping track of the configuration of the
body over time. This involves the integration of Ṙ = RΩ̂ = ω̂R. In what follows we will con-
cern ourselves with this integration that will tell us what the configuration of the rigid body is
at every given time instant. If one considers element by element then Ṙ=RΩ̂ = ω̂R represents
nine time varying ODEs. However since RT R = I3×3 defines six constraints we see that all the
nine differential equations defined by Ṙ = RΩ̂ = ω̂R are not independent. Thus it is important
to know how to find independent equations to describe these kinematics. This brings us to
to the question of parameterizing rotations or in other words finding suitable coordinates for
SO(3) and thereby representing Ṙ = RΩ̂ = ω̂R in terms of these parameterizations.

In section-1.2.2 we saw that if R can be thought of as a map that transforms points in
space to other points in space in such a way that it preserves distances between points and
angles between lines. That is, every R ∈ SO(3) can be viewed as a rigid rotation of space.
Conversely, since we have seen that two frames with coinciding origins are related by b = eR,
every rigid body rotation about a fixed point can also be identified with an R ∈ SO(3) by
fixing an orthonormal frame b on the rigid body and finding its relationship with some inertial
frame-e. In what follows we will take a closer look at all possible rigid body rotations. Or in
other words we will try to get some insight about the structure of the space SO(3).

Since RT R = I3×3 we see that all 9 elements of the 3×3 matrix R are not independent.
The condition RT R = I3×3 gives rise to six constraints on the 9 elements of R. Thus we see
that there are only 3 independent elements in R. Therefore we can conclude that in order to
express R we need to know at least three parameters. This implies that the space SO(3) is a
3-dimensional space. However we will see below that SO(3) is quite different from the the
3 dimensional vector space R3 and thus that there exists no way of globally parameterizing
SO(3) using only three parameters.

1.4.1 Non Commutativity of Rotations

In R3 the binary operation of addition that makes it a vector space is commutative. Below
we will see that the space of rotations, SO(3), even though is closed under the composition
of rotations is not a vector space under composition of rotations since the composition of
rotations is not commutative. This indicates a quite significant difference with R3.
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To see this let us first consider composition of rotations by considering three frames e, a
and b. Let Rα ,Rβ ∈ SO(3). Consider the two rotations of space that take the frame e to a and
and the frame a to b respectively such that a = eRα and b = aRβ . Since b = aRβ = eRαRβ we
see that R = RαRβ is a rotation that takes e to a by a rotation Rα and then to b by a rotation
Rβ . Thus composition of rotations correspond to right multiplication by the corresponding
rotation matrix. Also consider the two rotations of space that takes the frame e to a′ and and
the frame a′ to b′ respectively such that a′ = eRβ and b′ = a′Rα . Since b′ = a′Rα = eRβ Rα we
see that R = Rβ Rα is a rotation that takes e to a′ by a rotation Rβ and then to b′ by a rotation
Rα . Since in general matrix multiplication is non-commutative RαRβ 6= Rβ Rα and therefore
the final frames in the two cases above b and b′ will not be the same.

Thus in general, a rotation by Rα followed up by a rotation Rβ will not be the same as a
rotation by Rβ followed up by a rotation Rα . That is rotations do not commute.

Let us illustrate this non-commutatitivity of rotations using some specific easy to visu-
alize examples. Now consider a counter clockwise rotation first about the third axis by an
angle equal to π/2 and then about the first axis by an angle equal to π/2. The resultant
frame b is then related to the original frame e by b = e(R3(π/2)R1(π/2)). When you re-
verse the oder of rotation the resultant frame b′ is then related to the original frame e by
b′ = e(R1(π/2)R3(π/2)). Since

R1(π/2)R3(π/2) =

0 −1 0
0 0 −1
1 0 0


R3(π/2)R1(π/2) =

0 0 1
1 0 0
0 1 0


we clearly see that b′ 6= b. This is illustrated in figure-1.25

1.4.2 Representation of Rotations

Euler’s theorem shows that every rotation R can be thought of as a rotation about some axis n
by some angle θ 25. This is depicted in figure 1.26. Therefore we see that the space of rotations,
SO(3) can be identified with the solid ball in R3 with the antipodal points on the boundary
identified or by the space of unit tangent vectors on S2 that is typically denoted by T0S2. This
confirms our previous conclusion that the dimension of the space SO(3) is three. On the other
hand this also confirms our observation that the space of SO(3) is quite different from R3. In
fact this shows that SO(3) is not isomorphic to R3. What this implies is that there exists no
way of globally parameterizing SO(3) using three parameters.

25 You are asked to prove this in exercise 3.13.
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Fig. 1.25 The non-commutativity of rigid body rotations.

Fig. 1.26 Euler’s Theorem that says that every rotation is a rotation about some axis n by some angle
θ .

Since SO(3) is three dimensional any choice of co-ordinates for parameterizing SO(3) will
involve three components. Below we will describe a specific way of assigning coordinates,
that are known as Euler angles. But since the preceding discussion shows that SO(3) can not
be isomorphic to R3 there exists no co-ordinate patch that will uniquely specify every point

69



Lecture notes by D. H. S. Maithripala, Dept. of Mechanical Engineering, University of Peradeniya

of SO(3). Thus any choice of Euler angles, or for that matter any three parameter local co-
ordinate system on SO(3) will have points at which they become singular. Below we will
begin by showing how one can parameterize R using unit quaternions to avoid this problem
of singularity.

1.4.2.1 Quaternion Representation of Rotations

Recall that in section-1.2.2 we have shown that if Ω̂ = RT Ṙ then Ω corresponds to an instan-
taneous rotation about Ω at an instantaneous rate that is equal to ||Ω ||. Thus if Ω is a constant
then the solution to the following initial value problem

Ṙ = RΩ̂ , R(0) = I3×3, (1.121)

is a pure rotation about the axis Ω at a constant angular rate of Ω . This says that if we define
θ(t) , t||Ω || then since Ω does not depend on t we see that the solution, R(t), to the initial
value problem (1.121) is a rotation about the axis Ω by an angle equal to θ = t||Ω ||. It is easy
to verify by direct computation that this solution is explicitly and uniquely given by

R(t) = exp(tΩ̂), (1.122)

where exp(A) denotes the matrix exponential of the matrix A.
Setting t = 1 in (1.122) we see that exp(Ω̂) ∈ SO(3) for any Ω̂ ∈ so(3) and that it cor-

responds to a rotation about the axis Ω by an angle θ = ||Ω ||. This process defines a map
exp : so(3)→ SO(3). By uniqueness of solutions of differential equations we find that the so
defined map exp : so(3)→ SO(3) is locally one-to-one26. In exercise-3.41 you are asked to
show27 that every R ∈ SO(3) can be thought of as a rotation about some axis Ω and hence
that for any given R there exists some Ω̂ ∈ so(3) such that R = exp(Ω̂). Thus we see that the
map exp : so(3)→ SO(3) is onto as well.

In summary what we have shown is that for every Ω there is a unique corresponding R
given by the matrix exponential exp(Ω̂) and that for every R there also exists some Ω

such that R = exp(Ω̂).

Let us now proceed to find an explicit expression for exp(Ω̂). In exercise-3.13 you are
asked to prove that

Ω̂
2 = (ΩΩ

T −||Ω ||2I).

From this it follows that
26 Showing this is beyond the scope of this lecture notes as it requires advanced mathematical notions
involving group theory.
27 Hint: First show that every R ∈ SO(3) has an eigenvalue that is equal to one. Let V be the cor-
responding eigenvector. Recall that R can be thought of as acting on space by rotations. Then since
RV =V we see that R is a rotation about V . Alternatively, consider an orthonormal basis for R3 with V
as the first basis vector, we may express R in this new basis and come to the same conclusion.
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Ω̂
3 =−||Ω ||2Ω̂ , Ω̂

4 =−||Ω ||2Ω̂
2, Ω̂

5 = ||Ω ||4Ω̂ , · · ·

and therefore in exercise-3.13 you asked to show that

exp
(

Ω̂

)
= I +

sin ||Ω ||
||Ω ||

Ω̂ +
1
2

(
sin ||Ω ||2
||Ω ||

2

)2

Ω̂
2. (1.123)

This is famously known as the Rodrigues formula. We stress again that this corresponds to a
rotation about the axis Ω by an angle θ = ||Ω ||. Thus letting n = Ω/||Ω || be the unit length
direction along Ω we can write the above equation also as

R = exp(θ n̂) = I + sinθ n̂+(1− cosθ) n̂2. (1.124)

Since we have seen that every R ∈ SO(3) can be written as R = exp(Ω̂) for some Ω̂ ∈ so(3)
we can also conclude that every R ∈ SO(3) can be written down using the expression (1.124)
for some angle θ and unit direction n. Observe that specifically if E1 = [1 0 0]T ,E2 =
[0 1 0]T ,E3 = [0 0 1]T then the Rodrigues formula (1.124) gives that exp(θiÊi) = Ri(θi)
corresponds to a rotation about the axis Ei by an angle equal to θi.

Let w = sin
(

θ

2

)
n and q0 = cos

(
θ

2

)
. Observe that since q2

0 + ||w||2 = 1 the ordered quadru-
ple of numbers q = (q0,w) represents a point on the surface of the unit sphere, S3 = {q ∈
R4 | ||q||= 1}, in R4. Then re-arranging the above expression we have that every R ∈ SO(3)
can be written down as

R = I +2q0ŵ+2ŵ2.

for some (q0,w) ∈ S3. Conversely we also see that for every q = (q0,w) ∈ S3 there is a unique
corresponding R ∈ SO(3) that is explicitly given by the above formula. Note that, since −q =
(−q0,−w) ∈ S3 also gives the same R that is given by q = (q0,w) ∈ S3, this correspondence
is two-to-one. In summary, we have the following:

The group of rotations SO(3) is isomorphic to S3/{1,−1} where the isomorphism is
explicitly given by the Rodrigues formula

R = I +2q0ŵ+2ŵ2. (1.125)

Here R corresponds to a rotation about w by an angle equal to θ = 2cos−1(q0). Using
algebraic manipulations it can also be shown that, in terms of (q0,w)∈ S3, the differential
equation Ṙ = RΩ̂ becomes [

q̇0
ẇ

]
=

1
2

[
−Ω ·w

q0Ω −Ω ×w

]
. (1.126)

The unit sphere in R4, denoted by S3 = {q ∈ R4 | ||q|| = 1} is also known as the space
of unit quaternions. We conclude this section by noting that the unit quaternion q = (q0,w)

71



Lecture notes by D. H. S. Maithripala, Dept. of Mechanical Engineering, University of Peradeniya

that correspond to a given rotation matrix R can be found using the following two expressions
obtained from (1.125):

trace(R) =−1+4q2
0 = 2cosθ +1, (1.127)

R−RT = 4q0ŵ = 4cos
(

θ

2

)
ŵ. (1.128)

The first expression determines q0 = cos θ

2 and the second expression determines w.

1.4.2.2 Euler Angle Representation of Rotations

The following matrix R obtained by composing the three consecutive counter clockwise rota-
tions about the axis i− j− k respectively

R = Ri(θ1)R j(θ2)Rk(θ3) (1.129)

is once again a special orthogonal matrix. This corresponds to a composition of a sequence
of rotations of a frame first around axis i by an angle θ1, then by an angle θ2 around axis
j and finally by an angle θ2 around axis k. This provides a map from a neighborhood of
the origin of R3 to a neighborhood of the identity in SO(3). Thus when i 6= j and j 6= k
the three numbers (θ1,θ2,θ3) serve as a local parameterization for SO(3). This is called the
i− j− k Euler angle parameterization of R. It is important to note that for certain angles this
correspondence is not unique, meaning that there exists certain R such that the corresponding
choice for (θ1,θ2,θ3) is not unique. For example consider the parameterization of R using the
three angles (θ1,θ2,θ3) corresponding to the 3-1-3 Euler angle parameterization of R that is
explicitly given by

R = R3(θ1)R1(θ2)R3(θ3) =

 c1c3− c2s1s3 c2c3s1 + c1s3 s1s2
−c3s1− c1c2s3 c1c2c3− s1s3 c1s2

s2s3 −c3s2 c2

 (1.130)

where we have used the notation ci , cosθi, si , sinθi. This parameterization is shown in
figure 1.27. It is easy to see that when θ2 = 0 or θ2 = π then R = R3(θ1 +θ3) and hence that
there exists no unique θ1,θ3 that describe the orientation of the resulting two frames e and b.
This situation is called gimbal lock in the stellite and robotics communities. This turns out to
be a common problem for any type of Euler angles being used. Thus in particular we find that
the Euler angles only provide a local isomorphism between R3 and SO(3).

The 3-1-3 Euler angles turn out to be a popular choice of local coordinates for SO(3)
in the robotics and satellite communities. In this parameterization θ1 is called the angle of
precession, θ2 is called the angle of nutation, and θ3 is called the angle of spin. For illustration
purposes, below, we will provide explicit expressions for the representation of the angular
velocity using the 3-1-3 Euler angle representation of R that is shown in figure 1.27. Consider
two frames b and e where b = eR. Then if RT Ṙ = Ω̂ , we have seen earlier that Ω is the
representation of the angular velocity in the b-frame while ω = RΩ is the representation of
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Fig. 1.27 The 3-1-3 Euler angle parameterization on SO(3).

the angular velocity in the e-frame. One can find that in terms of the 3-1-3 Euler angles they
are explicitly given by:

Ω =

θ̇1 sinθ2 sinθ3 + θ̇2 cosθ3
θ̇1 sinθ2 cosθ3− θ̇2 sinθ3

θ̇1 cosθ2 + θ̇3

 , (1.131)

ω =

 θ̇3 sinθ2 sinθ1 + θ̇2 cosθ1
−θ̇3 sinθ2 cosθ1 + θ̇2 sinθ1

θ̇3 cosθ2 + θ̇1

 . (1.132)

Differentiating (1.131) we obtain the body angular acceleration

Ω̇ =

 θ̈1 sinθ2 sinθ3 + θ̇1θ̇2 cosθ2 sinθ3 + θ̇1θ̇3 sinθ2 cosθ3 + θ̈2 cosθ3− θ̇2θ̇3 sinθ3
θ̈1 sinθ2 cosθ3 + θ̇1θ̇2 cosθ2 cosθ3− θ̇1θ̇3 sinθ2 sinθ3− θ̈2 sinθ3− θ̇2θ̇3 cosθ3

θ̈1 cosθ2− θ̇1θ̇2 sinθ2 + θ̈3

 .
(1.133)

From (1.131) we have

Π = IΩ =

I1
(
θ̇1 sinθ2 sinθ3 + θ̇2 cosθ3

)
I2
(
θ̇1 sinθ2 cosθ3− θ̇2 sinθ3

)
I3
(
θ̇1 cosθ2 + θ̇3

)
 ,
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and from (1.133) we have

IΩ̇ =

I1
(
θ̈1 sinθ2 sinθ3 + θ̇1θ̇2 cosθ2 sinθ3 + θ̇1θ̇3 sinθ2 cosθ3 + θ̈2 cosθ3− θ̇2θ̇3 sinθ3

)
I2
(
θ̈1 sinθ2 cosθ3 + θ̇1θ̇2 cosθ2 cosθ3− θ̇1θ̇3 sinθ2 sinθ3− θ̈2 sinθ3− θ̇2θ̇3 cosθ3

)
I3
(
θ̈1 cosθ2− θ̇1θ̇2 sinθ2 + θ̈3

)
 .

Thus we see that Euler’s Rigid body equations (1.76) in 3-1-3 Euler angles (θ1,θ2,θ3) take
the form

I1 sinθ2 sinθ3 θ̈1 + I1 cosθ3 θ̈2 =−I1
(
θ̇1 θ̇2 cosθ2 sinθ3 + θ̇1 θ̇3 sinθ2 cosθ3− θ̇2 θ̇3 sinθ3

)
+(I2− I3)

(
θ̇1 sinθ2 cosθ3− θ̇2 sinθ3

)(
θ̇1 cosθ2 + θ̇3

)
+T e

1

I2 sinθ2 cosθ3 θ̈1− I2 sinθ3 θ̈2 =−I2
(
θ̇1 θ̇2 cosθ2 cosθ3− θ̇1 θ̇3 sinθ2 sinθ3− θ̇2 θ̇3 cosθ3

)
+(I3− I1)

(
θ̇1 cosθ2 + θ̇3

)(
θ̇1 sinθ2 sinθ3 + θ̇2 cosθ3

)
+T e

2

I3 cosθ2 θ̈1 + I3 θ̈3 = I3 θ̇1 θ̇2 sinθ2 +(I1− I2)
(
θ̇1 sinθ2 sinθ3 + θ̇2 cosθ3

)(
θ̇1 sinθ2 cosθ3− θ̇2 sinθ3

)
+T e

3 .

Since we have seen that 3-1-3 Euler angles become singular when θ2 = 0 we see that
the above equations also become ildefined at θ2 = 0.In section-1.4.2.1 we have seen how to
overcome the complications involved in parameterizing R using Euler angles by instead using
unit quaternions (q0,w) ∈ S3 as given by expression (1.125). We also pointed out that in this
parameterization Ṙ=RΩ̂ is given by the differential equation (1.126) and hence one can avoid
any singularities by resorting to unit quaternions instead.

Example of a Forced Gyroscope

Fig. 1.28

For the axi-symmetric gyroscope, I1 = I2 = Il,Iz and the rigid body equations take the form

IlΩ̇1 = (Il− Iz)Ω2Ω3 +T1, (1.134)
IlΩ̇2 = (Iz− Il)Ω3Ω1 +T2, (1.135)
IzΩ̇3 = T3. (1.136)

Let us parameterize the rotation matrix from the earth fixed frame e to a disk fixed frame d
using the 3-1-3 Euler angles. We will need this to express the force moment
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T =

T1
T2
T3

 .
Let e be an Earth fixed frame with origin, O. A frame b is fixed to the outer gimbal of

the Gyroscope, a frame c is fixed to the inner gimbal and a frame d is fixed on the disc.
Let d(t) = eR(t). The b(t) frame is fixed on the outer gimbal so that b3(t) ≡ e3(t). Then
b(t) = eR3(θ1(t)) where θ1 is the angle of rotation of b about the fixed e3,b3 axis. The frame
c(t) is fixed on the inner gimbal so that c1(t) ≡ b1(t). Then c(t) = b(t)R1(θ2(t)) where θ2
is the angle of rotation of c about the c1,b1 axis. The frame d(t) is fixed on the disc so that
d3(t)≡ c3(t). Then d(t) = c(t)R3(θ3(t)) where θ3 is the angle of rotation of c about the c3,d3
axis.

Now since d(t) = eR(t) we have that

R = R3(θ1)R1(θ2)R3(θ3) =

 c1c3− c2s1s3 c2c3s1 + c1s3 s1s2
−c3s1− c1c2s3 c1c2c3− s1s3 c1s2

s2s3 −c3s2 c2

 (1.137)

and hence that R is naturally parameterized by the 3-1-3 Euler angles. Recall that these are
singular when θ2 = 0,π .

Neglecting the gimbal inertia, the force moments acting on the disc are calculated as fol-
lows. The moments acting on the outer gimbal due to the fixed end.

T f = eT 1 = e

T 1
1

T 1
2

u1


The moments acting on the inner Gimbal due to the outer Gimbal.

T I = bT 2 = b

 u2
T 2

2
T 2

3


The moments acting on the disc due to the inner Gimbal.

T D = cT 3 = c

T 3
1

T 3
2

u3

= dT

Neglecting the inertia of the outer and inner gimbals we have

eT 1 =−bT 2, bT 2 =−cT 3

and hence
T 1 =−R3(θ1)T 2, T 2 =−R1(θ2)T 3, T 3 = R3(θ3)T, (1.138)

and
T 1 = R3(θ1)R1(θ2)R3(θ3) T = RT.
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From the first set of equations in (1.138) we have that T 2
3 =−u1 and from the second set of

equations in (1.138) we have that T 3
1 =−u2. Substituting these in the second set of equations

in (1.138) we have  u2
T 2

2
−u1

= R2

 u2
−T 3

2
−u3

 .
The last equation in this set of equations give

T 3
2 =

(u1− cosθ2u3)

sinθ2
.

Now since T 3 = R3 T the force moments on the disc expressed in d is given by

T = RT
3

 −u2
(u1−cosθ2u3)

sinθ2
u3

=

 cosθ3 sinθ3 0
−sinθ3 cosθ3 0

0 0 1

 0 −1 0
1

sinθ2
0 −cotθ2

0 0 1

u1
u2
u3

 .

T =


sinθ3
sinθ2

−cosθ3 −sinθ3 cotθ2
cosθ3
sinθ2

sinθ3 −cosθ3 cotθ2

0 0 1


u1

u2
u3

 .
Here u1,u2 and u3 are the external moments applied about the rotation axis of the oute gimbal,
the rotation axis of the inner gimbal and the rotation axis of the disc.

Observe that the above expression for the force moment becomes singular when θ2 = 0
or θ2 = π . At these angels the external moment directions on the outer gimbal and the disc
coincides. This situation is commonly referred to as gimbal locking.
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Chapter 2
Lagrangian Formulation of Classical Mechanics

When one considers a system that consists of several inter connected rigid bodies the process
of describing the motion of the entire system by the application of Euler’s rigid body equations
become cumbersome due to the fact that each body has to be considered separately. The
Lagrangian formulation of Newton’s laws of motion circumvent this problem. It hinges on
the idea of viewing the composite system as a point that evolves in an abstract space called
the configuration space of the system and on insisting that laws of nature be independent of
the coordinates used to represent the system. In the next several sections we will develop this
concept in detail.

2.1 Configuration Space and Coordinates

The first step that an observer takes in describing the motion of a system of particles is the
complete specification of each of their positions in 3D Euclidean space. This specification is
referred to as the configuration of the system. The set of all possible configurations is called
the configuration space. We will begin our study of describing the motion of particles by in-
vestigating the configuration space of a single particle that is free to move in 3D space. We
have seen in the previous chapter that, in Galilean mechanics, the configuration space of a
free particle is assumed to be of the from of a 3D Euclidean space allowing us to identify a
point P in space with a point in R3 using an orthonormal frame e = [e1 e2 e3]. We do this by
assigning the the ordered triple of numbers (x1,x2,x3) to the point P where xi is the perpen-
dicular distance to the point along the ei direction of the orthonormal frame. Observe that this
identification depends entirely on the choice of the ortho-normal frame e. For instance con-
sider figure-1.4 in section-1.2. The position of the particle P is described by the two different
ordered triple of real numbers (x1,x2,x3) and (X1,X2,X3) in the two different frames e and b
respectively.

Orhto-normal frames are also not the only means of identifying 3D-Euclidean space with
R3. Curvilinear frames can also be used for this identification. For example, as shown in
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figure-2.1, we may use the quantities (r,θ ,φ) to describe a point1. All three sets of ordered
triples (x1,x2,x3), (X1,X2,X3) and (r,θ ,φ) describe the same point in 3D-Euclidean space
but note that they are in general different. Thus the three descriptions provide three different
identifications with R3. A particular identification of Euclidian space with R3 is what we refer
to as a choice of co-ordinates for the Euclidian space. Therefore all three sets of ordered
triples (x1,x2,x3), (X1,X2,X3) and (r,θ ,φ) provide three different choices of co-ordinates for
Euclidian space. However all identifications are with R3 (have three numbers or components)
and thus we say that the dimension of the configuration space of the unconstrained particle is
three.

When the co-ordinates are expressed using an ortho-normal frame they are called rectan-
gular or Euclidean co-ordinates. The relationship between two different co-ordinates is called
a co-ordinate transformation. The rectangular or Euclidean co-ordinates of the point P given
by (x1,x2,x3) are related to the spherical polar co-ordinates (r,θ ,φ) by

Fig. 2.1 Description of the point P using Spherical-Polar Co-ordinates. Figure copied from [8].

x1 = r sinφ cosθ ,

x2 = r sinφ sinθ ,

x3 = r cosφ .

Thus using spherical polar co-ordinates we can express the Euclidean representation matrix x
as,

1 Observe that not every point in three dimensional Euclidian space can be uniquely represented using
these co-ordinates. For instance none of the points on the e3 axis has a unique representation. Such
points are called co-ordinate singularities of the co-ordinate system.
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x =

x1
x2
x3

=

 r sinφ cosθ

r sinφ sinθ

r cosφ

 .
The everyday motion of many of the objects of interest can not be approximated or ab-

stracted as the motion of a single unconstrained particle. Typically the motion of such objects
can be viewed as the collective motion of a set of particles that are individually constrained
through their mutual interaction or due to the external influence of the rest of the particles in
the universe.

In general when a point particle is geometrically constrained to move in space the three
quantities x1,x2,x3, comprising the components of the Euclidean representation matrix x, will
not be independent. If the motion of the particle is geometrically constrained so that the quan-
tities (x1,x2,x3) have to satisfy some scalar expression h(x1,x2,x3) = 0 then the particle is said
to be Holonomically constrained. Holonomic constraints reduce the degrees of freedom. A sin-
gle constraint of the form h(x1,x2,x3) = 0 reduces the DOF by one, from three to two. If the
number of such constraints are two then the DOF of the particle reduces to one. For instance
when the particle is constrained to move on a sphere of radius equal to one then the con-
straint equation in the spherical-polar co-ordinates is h(r,θ ,φ) = r−1 = 0 and the Euclidean
position representation x will become [sinφ cosθ sinφ sinθ cosφ ]T . Notice that the two
independent measurements (θ ,φ) are sufficient to describe the Euclidean position uniquely
when φ 6= 0,π . If the particle is constrained to move in a circle of radius one that lies in the
e1,e2 plane then there are two constraints, h1(r,θ ,φ) = r−1 = 0, h2(r,θ ,φ) = φ −π/2 = 0
and the Euclidean position representation x will become [cosθ sinθ 0]T . Once again notice
that the single measurement θ is sufficient to describe the Euclidean position uniquely. The
general expression

n = 3− f , (2.1)

relates the DOF, n, of a particle moving in three dimensional space to the number of holonomic
constraints, f , imposed on that particle. If N points are moving in space then the total degrees
of freedom of the system of points is

n = 3N− f , (2.2)

where now f is the total number of holonomic constraints of the system of points. Summariz-
ing the above discussion we have seen that if the particle is constrained to move such that its
distance to the origin is always fixed then the configuration space can be identified with the
2D-sphere, S2, and if it is additionally constrained to move in a plane then the configuration
space can be identified with the circle, S. A little less obvious example is the planar double
pendulum discussed below.

Example 2.1. Consider the planar double pendulum shown in figure 2.2. The configuration
space of mass m1 can clearly be identified with the circle with origin at the fixed point O and
radius L1. With respect to m1 the possible configurations of m2 lie on the circle S, with origin
at m1 and radius L2. Thus if the configuration of m1 (that is the location of m1 on the circle
of radius L1 with origin fixed at O) is known then the configuration of m2 can be uniquely
specified if we specify the position of m2 on the circle S, with origin at m1 and radius L2. Thus
the configuration space of the two particle system is the torus S×S.
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Fig. 2.2 The Double Planar Pendulum

The idea of co-ordinates for a general configuration space, such as a sphere, a circle or
a torus, is developed in a fashion similar to what we have done so far for Euclidean space.
Roughly, we try to associate points of the configuration space with an ordered n-tuple of real
numbers in an essentially unique way. That is we try to identify either the entire configuration
space, or a significant portion of it with some portion of Rn. Such an identification is called
a co-ordinate patch of the configuration space2. If a particular co-ordinate patch is incapable
of covering all the points of a configuration space we may require several other choices to
represent these points as well. Then by “patching” them together we can “cover” all the points
in the configuration space. An important fact about co-ordinates is that if the configuration
space is “smooth” then what ever the choice of co-ordinates we use, the number n in the
identification is a constant. This number is referred to as the dimension of the configuration
space. The degrees of freedom (DOF) of a system of particles is defined to be the dimension
n of the configuration space.

Example 2.2. If the configuration space is a circle, as is the case for a simple blob pendulum,
then the single quantity θ is sufficient to uniquely describe every point except one point on
the circle3. Thus prescribing θ allows us to uniquely identify almost all points on the circle
with R and provides a choice of co-ordinates for the circle. Since the identification has only
one component or in other words is with R the circle is one dimensional. To account for
the problematic point we can start from a different point on the circle to get a different angle
correspondence. That gives us another choice of a co-ordinate patch for the circle. Collectively
both these co-ordinate patches will cover all the points on the circle.

Example 2.3. Let us consider the sphere. Referring to figure 2.1 we can see that the two in-
dependent quantities θ and φ uniquely describe every a point on the sphere except the North
and South poles of the sphere4. Thus (θ ,φ) provide us with a choice of a co-ordinate patch
for the sphere and covers almost all points on the sphere. That is we have prescribed a way of
uniquely identifying any point, except the poles, on the sphere with a point in R2. Since the
identification is with R2 the dimension of the sphere is two.

2 The precise mathematical definition of this notion is beyond the scope of these notes
3 The points described by θ = 0 and θ = 2π is the same point hence the uniqueness fails at this point.
4 Try to reason why this is so.
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Example 2.4. Consider a particle constrained to move on a sphere of radius r (refer to figure
2.1). The representation of P using an ortho-normal frame e fixed at the center of the sphere
can be expressed using the polar co-ordinates (θ ,φ) as

x = r

 sinφ cosθ

sinφ sinθ

cosφ

 .
Then the velocity in the e frame expressed using the polar co-ordinates is

v = ẋ = r

 φ̇ cosφ cosθ − θ̇ sinφ sinθ

φ̇ cosφ sinθ + θ̇ sinφ cosθ

−φ̇ sinφ

 .
and the acceleration in the e frame expressed using the polar co-ordinates is

a = v̇ = r

aφ̈ cosφ cosθ − φ̇ 2 sinφ cosθ −2φ̇ θ̇ cosφ sinθ − θ̇ 2 sinφ cosθ − θ̈ sinφ sinθ

φ̈ cosφ sinθ − φ̇ 2 sinφ sinθ +2φ̇ θ̇ cosφ cosθ − θ̇ 2 sinφ sinθ + θ̈ sinφ cosθ

−φ̈ sinφ − φ̇ 2 cosφ

 .

In general a configuration space will be referred to as a configuration manifold. Roughly
a general space Q will be called a manifold if Q can be covered by a set of open sets
Uα such that there exists a diffeomorphism φα : Uα → Vα ⊂ Rn for some fixed n an
integer and that in any overlapping set the associated map φβ ·φ−1

α : Vα ∩Vβ → Vα ∩Vβ

is differentiable. The pair (φα ,Uα) is called a co-ordinate patch of Q.

The technically precise definition of a manifold and coordinates is a bit more involved and
is beyond the scope of this class.

2.2 Euler-Lagrange Equations for Holonomic Systems

In this section we provide an equivalent formulation of Newtonian mechanics that turns out
to be convenient when the system consists of several moving components. In the previous
section we have seen that the configuration of a system of interacting and constrained set of
particles can be can be thought of as a point in some abstract space called the configuration
space Q.

Let q(t) be a smooth curve on Q such that q(0) = q. Then the velocity at q given by q̇(0)
is termed the tangent vector to the curve q(t) at q. Different parameterisations and different
curves through q give different such tangent vectors at q. We denote by TqQ the space of all
such tangent vectors at q. One can show that TqQ is a vector space. We call this the tangent
space to Q at q. The collection of all such tangent spaces to Q is called the tangent bundle
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of Q and is denoted by TQ. When one writes the total kinetic energy T of the system we
observer that it takes the form of a positive definite quadratic form on each TqQ. That is the
kinetic energy takes the form

T =
1
2

q̇T G(q)q̇ ,
1
2
〈〈q̇, q̇〉〉,

where G(q) is a symmetric positive definite quadratic form that depends smoothly on q. Notice
that it defines an inner product on each TqQ that varies smoothly on Q.

Let T ∗q Q be the space of all linear functionals on TqQ. That is T ∗q Q is the collection of all
linear maps τq : TqQ→R. Specifically if τq ∈ T ∗q Q then τq(vq) ∈R for all vq ∈ TqQ and τq is
linear. We will use the notation τq(vq), 〈τq,vq〉. We call this space T ∗q Q the cotangent space
of Q at q. The collection of all such cotangent spaces at different points over the configuration
space is called the cotangent bundle and is denoted by T ∗Q. One can show that forces are
elements of the cotangent bundle and call them generalized forces. Consider a generalized
force τ ∈ T ∗Q and a smooth curve q : [t1, t2]→Q. The quantity

W ,
∫

q(t)
τ =

∫ t2

t1
〈τ, q̇〉dt

is defined to be the work done by the force along the trajectory q(t). By definition work is
path dependent. However there exists certain forces such that the work done by these forces
are path independent. We call such forces conservative forces. Since the work done by them
are path independent one can show that there exists a function U : Q→R such that τ =−dU .
The function U will be called the potential energy function associated with τ .

A mechanical system on Q is defined by the kinetic energy, KE, the potential energy U ,
and the nonconservative forces f ∈ T ∗Q acting on the system. In the Lagrangian formulation
of mechanics one defines the Lagrangian L : TQ→ R by

L(q, q̇) = T −U =
1
2
〈〈q̇, q̇〉〉−U(q).

In a certain co-ordinate patch of Q we can express q, q̇,dU as q = (q1,q2, · · · ,qn), q̇ =
(q̇1, q̇2, · · · , q̇n), and dU = ( ∂U

∂q1
, ∂U

∂q2
, · · · , ∂U

∂qn
).

Let us look a bit more carefully at the external forces acting on the system. Recall that
generalized forces, τ , are linear functionals acting on velocities (linear operators on TQ) and
that δw = 〈τ, q̇〉δ t = 〈τ,δ t q̇〉 = 〈τ,δq〉 is the infinitesimal work. This is also known as the
virtual work due to the generalized force τ being displaced by a virtual change of the co-
ordinates δq. In co-ordinates if τ = (τ1,τ2, · · · ,τn) then one can write

δw = 〈τ,δq〉=
n

∑
i=1

τiδqi.

Thus we can use this expression to find the generalized force components τi once we write
down the virtual work of the system.

Using the above notations the Euler-Lagrange equations of motion for the system are:
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d
dt

(
∂L
∂ q̇i

)
− ∂L

∂qi
= τi, for i = 1,2, · · · ,n. (2.3)

Let us look at what these equations say about motion when no non-conservative forces are
present (that is τ ≡ 0). In the absence of non-conservative forces, the integral

A =
∫ t2

t1
L(q(t), q̇(t))dt

can be given the interpretation of total change occurring in the system during the time inter-
val [t1, t2]. It is commonly referred to as the total action during that time interval. What the
Lagrangian equation then says is that the system evolves in such a way hat this total change
(the total action) is a minimum. In other words, of all the possible paths of motion the actual
motion is the one that minimizes the total change in the system. Dealing with these issues
requires us a little bit of the theory of calculus of variations and is beyond the scope of this
course.

2.3 Examples

2.3.1 Inverted Pendulum on a Cart

Fig. 2.3 Inverted Pendulum on a Cart.

The configuration space is Q = R×S with co-ordinates (x,φ). The kinetic energy of the
system is

T =
1
2
(
(M+m) ẋ2 +(mL2 + I) φ̇

2 +2mL φ̇ ẋcosφ
)
. (2.4)

Here M is the mass of the cart, m is the mass of the pendulum, L is the distance from the pivot
point to the center of mass of the pendulum, I is the moment of inertia of the pendulum and g
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is the gravitational acceleration.

Potential energy of the system is given by

U = mgLcosφ . (2.5)

The virtual work due to a virtual displacement of the co-ordinates (δx,δθ) is δw = f δx.
Thus the generalized external nonconservative forces are given by f = (u,0). The Lagrangian
is L(x,θ , ẋ, θ̇) = T −U and thus the Euler-Lagrange equations of the system are

d
dt

(
∂L
∂ ẋ

)
− ∂L

∂x
= u,

d
dt

(
∂L
∂ θ̇

)
− ∂L

∂θ
= 0,

Which after re-arranging become:

ẍ =

((
mL2 + I

)
u+m2L3 sin(φ) φ̇ 2 +mLI sin(φ) φ̇ 2−m2L2gcos(φ)sin(φ)

)(
(m+M)I +M mL2 +m2L2 sin2

φ
) , (2.6)

φ̈ =

(
−m2 L2 sin(φ)cos(φ) φ̇ 2 +mL(m+M)gsinφ −mLucosφ

)(
(m+M)I +M mL2 +m2L2 sin2

φ
) . (2.7)

2.3.2 Falling and rolling disk

In section-2.3.2 we have shown that the kinetic energy of the falling rolling disk is

KE =
1
2
(
Mẋ2 +Mẏ2 + Irφ̇

2 +(Ip +Mr2 sin2
α)α̇2 +(Ip cos2

α + Ir sin2
α)θ̇ 2−2Irφ̇ θ̇ sinα

)
where I = diag(Ip,Ir,Ip) is the moment of inertia of the disk in a body fixed frame and M is
the mass of the disk. The potential energy is

PE = Mgr cosα.

Thus the Lagrangian is

L=
1
2
(
Mẋ2 +Mẏ2 + Irφ̇

2 +(Ip +Mr2 sin2
α)α̇2 +(Ip cos2

α + Ir sin2
α)θ̇ 2−2Irφ̇ θ̇ sinα

)
−Mgr cosα.

The external generalized forces acting on the system are

ω1 = τφ dφ , ω2 = ταdα.

The non-holonomic constraint 1-forms are

ω2 = sinθdx− cosθdy, (2.8)
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ω3 = cosθdx+ sinθdy− rdφ . (2.9)

The non-holonomic constraints are given by

ω2(q̇) = sinθ ẋ− cosθ ẏ = 0,
ω3(q̇) = cosθ ẋ+ sinθ ẏ− rφ̇ = 0.

Which results in

ẋ = rφ̇ cosθ (2.10)
ẏ = rφ̇ sinθ . (2.11)

Using the Euler-Lagrange equations for the falling and rolling disk given by,

d
dt

(
∂L
∂ q̇i

)
− ∂L

∂qi
= ω1 +ω2 +λ3ω3 +λ2ω4,

we have

(Ip cos2
α + Ir sin2

α)θ̈ − Ir sinαφ̈ = −2(Ir− Ip)α̇θ̇ sinα cosα + Irα̇φ̇ cosα (2.12)

(Ip +Mr2 sin2
α)α̈ = −Mr2

α̇
2 sinα cosα +(Ir− Ip)θ̇

2 sinα cosα− Irφ̇ θ̇ cosα +Mgr sinα + τα ,

(2.13)

(Ir +Mr2)φ̈ − Ir sinαθ̈ = Irθ̇ α̇ cosα + τφ (2.14)

2.3.3 Double Pendulum
dθ1

−3L1 m2 sin(2θ1−2θ2)dθ1
2+6L2 m2 sin(θ1−θ2)dθ2

2+3gm1 sin(θ1)−3gm2 cos(θ1−θ2) sin(θ2)

2L1 (−3m2 cos(θ1−θ2)
2+m1+3m2)

dθ2
3L2 m2 sin(2θ1−2θ2)dθ2

2

2 +sin(θ1−θ2)(L1 dθ1
2 m1+3L1 dθ1

2 m2)+
gm1 sin(θ2)

4 − 3gm2 sin(θ2)
2 +

3gm1 sin(2θ1−θ2)
4

L2 (3m2 sin(θ1−θ2)
2+m1)


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Chapter 3
Exercises

3.1 Exercises on Particle Motion

Exercise 3.1. Let e and e′ be two inertial observers and let A be some space-time event. Let the
quadruple (t,x) ∈R4, where t ∈R and x ∈R3, be the representation of the space-time event A
that corresponds to e while let (τ,ξ )∈R4 where τ ∈R and ξ ∈R3 be the representation of the
space-time event A that corresponds to e′. When comparing the motion described in the two
frames we need to know how the two representations (coordinates) are related to each other.
Specifically we will show that inertial observers must necessarily be translating at constant
velocity with respect to each other without rotations. We do this by showing the following:

(a) The assumption that time is homogeneous and that all intervals of time are inertial observer
invariant means that necessarily τ = t +a where a is a constant.

(b) Homogeneity of space implies that necessarily ξ = α +β t +Rx where α,β are constant
3×1 matrices and R is a constant 3×3 matrix.

(c) The assumption that space intervals are inertial observer independent implies that R is an
orthonormal constant transformation (that is RT R = RRT = I).

(d) Let O′ be the origin of the orthonormal frame used by e′ to make spatial measurements.
If the space-time event O′ has the representation (t,o) according to the observer e then
since v = ȯ =−RT β = constant we see that the velocity of the e′ frame with respect to the
e given by v = ȯ must be a constant. If both clocks of e and e′ are synchronized (that is
a = 0) and if a certain space-time event A has the representation (t,x) according to e then
the space-time event A has the representation (t,R(x− vt)) according to e′.

Exercise 3.2. Using the principle of conservation of linear momentum in inertial frames, of a
system of interacting and isolated set of particles, derive Newton’s three laws of motion.

Exercise 3.3. A bead that is constrained to move on a frictionless wire that lies on a horizontal
plane. The wire is bent to a shape of a parabola (ie. y = x2). Find the constraint forces that
keep the bead on the wire and the equation of motion of the bead. Assume that the bead does
not interact with any other objects other than the wire.

Exercise 3.4. For each of the systems shown in figures 3.1 to 3.3, derive the governing differ-
ential equations using Newton’s law. State all assumptions made.
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Fig. 3.1 A simple spring mass damper system where the mass is constrained to move horizontally.
Assuming that the deflections and the velocity of the mass are small the viscous force fv exerted by
the damper can be assumed to be approximately proportional to the relative displacement between the
piston and the cylinder of the damper.

Fig. 3.2 Two masses coupled by springs and dampers. The dry friction forces between the two masses
and the horizontal surface given by fv1 and fv2 may be assumed to be negligibly small while the viscous
friction force fv3 exerted by the damper can be assumed to be proportional to the relative velocity of
the piston and the cylinder of the damper.

Fig. 3.3 Three masses coupled by springs. The dry friction forces between the two masses and the
horizontal surface given by fv1 and fv2 may be assumed to be negligibly small while the dry friction
between the masses M1 and M2 and M1 and M2 denoted by fv3 and fv4 are of non-negligible magnitude.

Exercise 3.5. Consider the 1-DOF electrostatic MEMS mirror model shown in figure 3.4.
Find the governing differential equations of the system. Note that the capacitance between two
parallel plate capacitors are given by c(l(t)) = εA

l(t) and the attractive coulomb force between

the two plates are given by fe(t) =
q(t)2

2εA where A is the cross sectional area of the plates.
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Fig. 3.4 1-DOF Electrostatic MEMS model. Let l0 be the zero voltage gap and let l(t) be the gap
length, v(t) be the voltage across the plate, and i(t) be the current in the circuit at a given time t.

Exercise 3.6. A particle P of mass m is constrained to move on the surface of a sphere of
radius r and origin O by attaching P to O using a tight in-elastic wire (refer to figure 3.5).
Except for the tension of the wire no other external forces act on the particle. Let frame e be a
frame with origin coinciding with O and fixed with respect to the sphere. The representation
of the point P with respect to e is x. Answer the following:

Fig. 3.5

1. Show that the velocity of the particle is always tangential to the sphere (orthogonal to the
position x, ie. xT ẋ = 0).

2. Differentiating the constraint xT ẋ = 0 show that the motion of the particle in the e frame
is described by
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ẍ =
1
m

fc(t) =−
||ẋ||2

r2 x,

where fc(t) is the representation of the tension force in the wire.
3. Write down the equations of motion as observed in a frame b(t) that is moving with respect

to the fixed frame e.

Exercise 3.7. — Einstein’s box experiment: Explain why a person standing on a scale inside
an elevator sees his or her weight doubled as the elevator accelerates up at a rate of g and sees
the weight reduced to zero if the elevator decelerates at a rate of g. Also show that if, for some
reason, the gravitational force field vanished and the elevator was moving up at an acceleration
of g then the scale would still show the correct weight of the person.

Exercise 3.8. For the system shown in figure 3.6,

1. Derive the equations of motion as observed by an observer in a frame fixed to the surface
on which the box is moving.

2. Derive the equations of motion as observed by an observer moving with the box (ie. in the
moving frame co-ordinates).

Fig. 3.6 Spring Mass Damper System in a Moving Box

Exercise 3.9. — Properties of a Rotation Matrix: Let e and b be two orthonormal, right
handed oriented frames with coinciding origin O. Let b = eR be the relationship between the
two frames. Show that RT R = RRT = I3×3 and det(R) = 1.

Exercise 3.10. The three rotated frames a,b,c are related to a fixed frame e as shown in figure
3.7. All frames are orthonormal. Let a = eR1(θ1), b = eR2(θ2), and c = eR3(θ3). Show using
direct calculations the following

R1(θ1)=

1 0 0
0 cosθ1 −sinθ1
0 sinθ1 cosθ1

 , R2(θ2)=

 cosθ2 0 sinθ2
0 1 0

−sinθ2 0 cosθ2

 , R3(θ1)=

cosθ1 −sinθ1 0
sinθ1 cosθ1 0

0 0 1


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and

RT
1 Ṙ1 = Ω̂1 =

0 0 0
0 0 −θ̇1
0 θ̇1 0

 , RT
2 Ṙ2 = Ω̂2 =

 0 0 θ̇2
0 0 0
−θ̇2 0 0

 , RT
3 Ṙ3 = Ω̂3 =

 0 −θ̇1 0
θ̇1 0 0
0 0 0


and

Ω̂
2
1 =−θ̇

2
1

0 0 0
0 1 0
0 0 1

 , Ω̂
2
2 =−θ̇

2
2

1 0 0
0 0 0
0 0 1

 , Ω̂
2
3 =−θ̇

2
3

1 0 0
0 1 0
0 0 0

 .

Rotation about e1 Rotation about e2 Rotation about e3

Fig. 3.7 Rotated Frames

Exercise 3.11. Show that the space of 3× 3 skew-symmetric matrices can be identified with
R3 using the identification Ω 7→ Ω̂ where

Ω̂ =

 0 −Ω3 Ω2
Ω3 0 −Ω1
−Ω2 Ω1 0

 ,
and Ω = [Ω1 Ω2 Ω3]

T . That is show that the map ̂ : R3→ so(3) is a one-to-one and onto
map.

Exercise 3.12. Show that the cross product in R3 satisfies

Ω ×X = Ω̂X ,

where Ω ,X ∈ R3 and ̂ : R3→ so(3) is the one-to-one and onto map discussed in exercise-
3.11.

Exercise 3.13. Prove the following properties of the cross product in R3.
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1. A×B =−B×A
2. A×B×C+B×C×A+C×A×B = 0
3. A · (B×C) =C · (A×B) = B · (C×A)
4. A× (B×C) = (A ·C)B− (B ·A)C
5. (Ω ×X) · (ω×X) = (Ω ·ω)||X ||2− (Ω ·X)(ω ·X)
6. Ω · (Ω ×X) = 0 = X · (Ω ×X)

Here we use the notation A ·B to denote the usual inner product in R3.

Exercise 3.14. Using the last property proven in exercise-3.13 show that (Ω ×X) is perpen-
dicular to both X and Ω .

Exercise 3.15. Show using exercise 3.13 part 4 (or direct verification) that

X̂2 = XXT −||X ||2I3×3.

for any X ∈ R3.

Exercise 3.16. If R∈ SO(3), and X and Y are 3×1 matrices show that the following identities
hold:

R(X×Y ) = RX×RY

R̂X = RX̂RT .

Exercise 3.17. Let e and b(t) be two orthonormal, right handed oriented frames with coin-
ciding origin O. Frame e is fixed while frame b is varying with time. Let b(t) = eR(t) be the
relationship between the two frames. Let RT Ṙ = Ω̂ and ω = RΩ . Show that the frame b(t)
is instantaneously rotating about an axis in space that has the representation ω in the e-frame
and Ω in the b(t)-frame at a rate equal to ||ω||= ||Ω ||.

Exercise 3.18. Particle motion in a circle: Consider a particle constrained to move in a circle
of radius r. Let e = [e1 e2 e3] be an orthonormal frame fixed on the circle such that e3 is
perpendicular to the plane of the circle. Let x be the representation of the particle with respect
to e.

1. Using the results of exercise 3.6 show that the velocity of the particle ẋ is tangential to the
circle.

2. Using a frame b(t) that is moving with the particle (ie. the particle appears fixed in b(t)),
show that ||ẋ||= rΩ where Ω is the angular velocity of the frame b with respect to e.

3. Show that the constraint force is radial and is given by fc(t) =−mΩ 2x and that the motion
of the particle in the e frame is described by

ẍ =−Ω
2x.

4. Show using Newton’s equations in the b(t) frame that the angular velocity, Ω , of the
particle is a constant.

5. Show that the position components x1 and x2 behave sinusoidally (ie. x1(t)= r sin(Ω t +φ1)
and x2(t) = r sin(Ω t +φ2) ).
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Exercise 3.19. Consider the ball of mass m constrained to move as shown in figure 3.8. The
orthonormal frame e is an earth fixed frame with origin at the centre of the disk. The orthonor-
mal frame b is fixed to the disk as shown in the figure. The disk is rotating about the e3 axis.
Gravity acts in the negative e3 direction and the disk and the mass lies on a smooth horizontal
surface. If the un-stretched length of the spring is y0 write down the equations of motion of
the mass.

Fig. 3.8 A disk lying on a horizontal plane while rotating about a vertical axis.

Exercise 3.20. Consider a ball of mass m constrained to move as shown in figure 3.9. The
orthonormal frame e is an earth fixed frame with origin at the centre of the disk. The orthonor-
mal frame c is fixed to the disk. The disk is rotating about a vertical axis (that is about the e3
axis) and about an axis through its centre that is perpendicular to the disk (that is about the c1
axis). Write down the equations of motion of the mass.

Fig. 3.9 A disk rotating about a vertical axis while spinning about an axis perpendicular to the disk.

Exercise 3.21. Consider the mechanical system shown in figure 3.10. The mass of the point P
is m. The un-stretched length of the spring is L0. Neglecting friction and the moment of inertia
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of the spring derive the equations of motion of the system if the arm is rotating at a constant
angular velocity of Ω .

Fig. 3.10 Rotating Spring Pendulum. Figure copied from G. T. Greenwood.

Exercise 3.22. Consider the setup shown in figure 3.11. The disk can rotate in a horizontal
plane. C is a parallel plate capacitor. The fixed plate is rigidly attached to the center of the
disk O while the movable plate is rigidly attached to the mass P. The end of the spring of
stiffness kl , (the point O′) can freely move inside the circular slot. When the mass is at a
distance l0 away from the origin the spring kl is unstretched. It can be assumed that OPO′

remains a straight line. Assuming small values of θ the force exerted by the spring kθ can be
assumed to equal kθ lθ and act in a direction perpendicular to OP and in the plane of the disc
where l is the distance OP (this spring is a simplified representation of a torsional spring and
hence assume that it does physically obstruct the angular motion of OPO′). When a voltage
is applied across the capacitor plates the resulting Coulomb forces exert a force, fc(t) on the
particle. The voltage across the capacitor is varied such that fc(t) = msin(ωt).

1. If the disc is rotating at a constant angular rate of Ω derive the equations of motion of the
particle.

2. Simulate the motion of the particle using MATLAB. Use r = 2, l0 = 1, kl/m=(2π×100)2,
kθ/m = (2π×10)2, ω = 2π×11, Ω = 300 r.p.m and initial conditions l(0) = l0, l̇(0) =
0,θ(0) = 0, θ̇(0) = 0. Show all necessary graphs and attach all MATLAB work that is
needed to produce these graphs.

3. Leaving all other parameters constant and using the same initial conditions as above sim-
ulate the motion for three different values of Ω in the range of 100 r.p.m to 1000 r.p.m

4. Using above results discuss how this device may be used to measure the angular rate
of change of the disk. This captures the basic operating principle of a vibrating MEMS
gyroscope.

5. Discuss what modifications you would do to change the operating range.
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6. Write a two page introduction to MEMS gyroscopes. The introduction should include
methods of fabrication, device types and usages and the current state of the art.

Fig. 3.11 The Basic Operating Principle of a Vibrating MEMS Gyroscope

Exercise 3.23. Explain using equation (1.45) why a Hurricane that has formed in the Northern
hemisphere has a counter clockwise rotation and a Hurricane that has formed in the Southern
hemisphere has a clockwise rotation (see figure 1.14).

Exercise 3.24. At a point on the equator a cannon is fired towards the West with an initial
velocity of 100m/s and a firing angle of 45o with the equator. Taking into consideration the
rotation of the Earth. Find the horizontal distance to the landing point of the cannon. Compare
these results with those obtained by neglecting the effects of rotation of the Earth.

Exercise 3.25. Prove that the Earth’s orbit around the sun is an ellipse (Kepler’s First Law).
You may assume that the Earth and the Sun are point particles of mass ME and MS respectively
and that the Gravitational attraction force between two masses is of magnitude GMSME

r2 where
G is the universal gravitational constant and r is the distance between the Earth and the Sun.
Recall that the equation of an ellipse is given by

r = r0
1+ e

1− ecosθ

where e = r1−r0
r1+r0

is the eccentricity and b
a =
√

1− e2 (refer to figure 3.12).
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Fig. 3.12

Exercise 3.26. Let B1 and B2 be two rigid bodies moving in 2-dimensional Euclidean space.
Show that there exists a point in both bodies with zero relative velocity. That is, viewed from
either body there is a point in the other that appears to be instantaneously fixed . Such a point
is called an instantaneous center.

Exercise 3.27. Kennedy’s Theorem: Prove the following important result applicable for two-
dimensional mechanisms. Three rigid bodies in relative motion with each other will have their
respective instantaneous centers lying in a straight line.

Exercise 3.28. Let I be the moment of inertia of a rigid body in a body fixed frame b fixed at
a point O. Let Ic be the moment of inertia of the same rigid body in a frame parallel to b but
fixed at the center of mass of the body Oc. Let X̄ be the representation of the center of mass

in the frame b. If the total mass of the body is M, show that I = Ic−M ̂̄X2
(the parallel axis

theorem).

Exercise 3.29. Prove the following properties about the inertia tensor I of a non-degenrate 3D
rigid body:

1. I is symmetric and positive definite.
2. There exists a frame b such that I is diagonal.

Exercise 3.30. Prove that the inertia tensor I is symmetric and positive definite.

Exercise 3.31. Consider a rigid body that is made of three point particles. The first two parti-
cles are of mass m and are positioned at X1 = [1 1 1]T and X2 = [−1 − 1 1]T respectively
while the third particle is of mass 2m and is positioned at, X3 = [0 0 −1]T with respect to the
body frame b. Write down explicitly the inertia tensor I in the body frame b.

Exercise 3.32. Calculate the moment of Inertia tensor I of each of the solid figures shown in
figure 3.13.

Exercise 3.33. Find the moment of inertia tensor of the shaft and arm system shown in figure
3.10. The radius of the shaft is rs, the length of the shaft is ls and the radius of the arm is ra.

Exercise 3.34. Consider the mechanical system shown in the figure 4.3. The moment of inertia
of the hoop about the vertical axis of rotation is Iz. The radius of the hoop is r. The mass of
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Fig. 3.13 Calculate the inertia tensor of each of these solid shapes.

the bead on the hoop is m. A viscous frictional torque acts about the vertical shaft of rotation.
The magnitude of this torque is proportional to the rotational speed about the vertical axis
and C is the constant of proportionality. Answer the following questions. Derive the equations
of motion of the system. For Iz = 1,m = 1,r = 1,C = 1,g = 1 simulate using MATLAB the
behaviour of the system for the case where initially the mass point P is displaced by an angle
7π/6 from the vertical.

Fig. 3.14 Bead on a Hoop. Figure copied from [8].

Exercise 3.35. Figure 3.15 shows a schematic representation of the Free/Forced vibration ap-
paratus in the applied mechanics lab. The apparatus consists of a beam pivoted at O. A damper
is attached to the point A and a spring is attached to the point B. The other end of the spring,
P, is constrained to move vertically. When the beam is horizontal and the point P has zero
displacement with respect to the reference, that is when θ = 0 and y = 0, the spring is at its
natural length (unstretched or uncompressed). The spring constant is k the damping constant
is C and the moment of inertia of the beam about O is I. Let OA = Lc and OB = Lk. Neglecting
the thickness of the beam and assuming that the angle of deflection of the beam is small find
the governing equations of the motion.
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Fig. 3.15 A schematic representation of the Free/Forced Vibration Apparatus in the Applied Mechan-
ics Lab.

Exercise 3.36. Consider the mechanical system shown in figure 3.10. The moment of inertia
of the shaft plus the arm about the vertical axis of rotation is Iz. The mass of the point P is m.
The un-stretched length of the spring is L0. Neglecting friction and the moment of inertia of
the spring derive the equations of motion of the system and simulate them using MATLAB.
Also find the Kinetic Energy of the system.

Exercise 3.37. Consider the ball inside the swinging hoop shown in figure 3.16. The hoop
has a mass distribution of ρ per unit length and a radius of r. Neglecting friction between
the ball and the hoop write down the constraint forces acting on the ball. Write down Euler’s
rigid body equations for the hoop and using this expression eliminate the constraint forces
appearing in the equations for the ball and find the equations that govern the motion of the
entire system.

Exercise 3.38. Consider the centrifugal governor shown in figure 3.17. Find the equations of
motion of the system. Assume that the mass of the links can be neglected and that the bottom
links are thin while the upper links are of non-negligible cross section.

Exercise 3.39. Prove Euler’s Theorem:

1. The eigenvalues of R ∈ SO(3) are always of the form {1,eiθ ,e−iθ}.
2. Every R ∈ SO(3) corresponds to a rotation about some axis by some angle.

Exercise 3.40. Answer the following:

1. Consider the initial value problem
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Fig. 3.16 Ball on Swinging Hoop. Figure copied from [8].

Fig. 3.17 Centrifugal Governor

Ṙ = RΩ̂ , R(0) = I3×3,

where Ω̂ is a constant. Show by direct verification that

R(t) = exp(tΩ̂)

is the unique solution of the above matrix ODE initial value problem.
2. Using the above result show that for any Ω̂ ∈ so(3) the matrix R = exp(Ω̂) corresponds

to a rotation about the axis Ω by an angle equal to ||Ω ||.
3. Using the second property property proven in exercise-3.13 show that

Ω̂
2w = (Ω ·w)Ω −||Ω ||2w = (ΩΩ

T −||Ω ||2I3×3)w
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for any 3×1 matrix w and hence that

Ω̂
3 =−||Ω ||2Ω̂ , Ω̂

4 =−||Ω ||2Ω̂
2, Ω̂

5 = ||Ω ||4Ω̂ , · · ·

4. Using the results of the question above show that

exp
(

Ω̂

)
= I3×3 +

sin ||Ω ||
||Ω ||

Ω̂ +
1
2

(
sin ||Ω ||2
||Ω ||

2

)2

Ω̂
2.

This equation is known as the Rodrigues formula.
5. Let E1 = [1 0 0]T ,E2 = [0 1 0]T ,E3 = [0 0 1]T . Using the Rodrigues formula explicitly

show that
exp(θ Êi) = Ri(θ),

where Ri(θ) is the rotation matrix that corresponds to a rotation about the ith-axis by an
angle equal to θ . Compare your results with what you did in exercise-3.10.

Exercise 3.41. Show that every R ∈ SO(3) can be expressed as R = exp(Ω̂) for some Ω̂ ∈
so(3).

Exercise 3.42. Consider the Gyroscope shown in figure 3.18. Using the results of section
1.4.2.2 derive the equations of motion.

Fig. 3.18 The Gimbal Gyroscope

Exercise 3.43. Consider the 3-DOF robotic arm shown in figure-3.19.

1. Find the relationship between the joint rotations and the displacement and velocities of the
end point of link-2.

2. Find the equations of motion of the robot arm.
3. Simulate the motion of the robot arm using MATLAB.

Exercise 3.44. For the single bar pendulum shown in figure 3.20 derive the equations of mo-
tion using Euler’s rigid body equations and also write down the kinetic energy of the system.
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Fig. 3.19 3-DOF Robot Arm

Fig. 3.20 Simple Pendulum

Exercise 3.45. For the double bar pendulum shown in figure 3.21 write down the kinetic en-
ergy of the system.

Exercise 3.46. Two point masses P1 and P2 are moving in three-dimensional Euclidean space
such that P1 moves on a sphere and the distance between P1 and P2 remains fixed. Specify the
configuration space and a suitable set of coordinates for the system. What is the DOF of the
system.
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Fig. 3.21 Double Pendulum
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Chapter 4
Answers to Selected Exercises

Answer to Exercise 3.6

In a Euclidean frame e, with no external force fields present, a particle P is constrained to
move on a sphere.

Since the particle is constrained to move on a sphere of radius r we have that

r2 = x2
1 + x2

2 + x2
3 = ||x||2 = xT x = constant,

where x is the representation of the particle in the e frame. Differentiating the constraint xT x =
constant we have that

2xT ẋ = 0,

thus the velocity in the e frame ẋ is orthogonal to x and hence lies tangent to the sphere.
Differentiating the constraint xT ẋ = 0 we have that

xT ẍ+ ẋT ẋ = 0.

Since the particle is constrained to move on a sphere its acceleration perpendicular to the
sphere should be zero. Thus we see that the constraint force acting on the particle should
cancel this acceleration if the particle is to move on the sphere. If no other constraints exists
then the constraint force comprises only this component and hence is normal to the surface.
Thus the representation of the force in the e frame is of the form

fc = αx.

Thus from Newton’s equations in the e frame

ẍ =
1
m

fc =
α

m
x.

Hence we have that
α

m
xT x+ ẋT ẋ = 0,

and that

α =−m
||ẋ||2

r2 ,
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and the constraint force is fc =−m ||ẋ||
2

r2 x. Now the motion of the particle is described by

ẍ =
1
m

fc =−
||ẋ||2

r2 x.

Fig. 4.1

Consider a moving frame b(t) such that the position of the particle appears fixed in b(t) and
b(t) is related to e as shown in figure-4.1. Note that this relationship is ill-defined when φ = 0
of φ = π .

If b(t) = eR(t) we have that a = eR3(θ) and b = aR2(φ). Thus b = eR = eR3(θ)R2(φ) and
R = R3(θ)R2(φ).

Recall that Ṙ = RΩ̂ . Differentiating x = RX we have that

ẋ = ṘX +RẊ = RΩ̂X .

where we have used the fact that Ẋ = 0 since P appears to be fixed in b(t). Thus

||ẋ||= ||RΩ̂X ||= ||Ω̂X ||= ||Ω ×X ||.

Newton’s Equations in the b frame are

mẌ =−mΩ̂
2X−2mΩ̂ ẋ−m ˙̂

ΩX +RT fc,

where fc =−m ||ẋ||
2

r2 x. Since x = RX and X is a constant we have
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0 =−mΩ̂
2X−m ˙̂

ΩX−m
||Ω̂X ||2

r2 X ,

and that
˙̂

ΩX =−Ω̂
2X− ||Ω̂X ||2

r2 X .

Now let us explicitly write down these equations. By construction of the frames X =
[0 0 r]T . Using results of exercise 3.10 we see that a = eR3(θ) and b = aR2(φ). Thus
b = eR = eR3(θ)R2(φ) and R = R3(θ)R2(φ). Differentiating we have

Ṙ = Ṙ3(θ)R2(φ)+R3(θ)Ṙ2(φ).

Now

Ω̂ = RT Ṙ = RT
2 (φ)R

T
3 (θ)Ṙ3(θ)R2(φ)+RT

2 (φ)R
T
3 (θ)R3(θ)Ṙ2(φ) = RT

2 (φ)Ω̂3R2(φ)+ Ω̂2.

Evaluating this we have

Ω̂ =

 0 −θ̇ cosφ φ̇

θ̇ cosφ 0 θ̇ sinφ

−φ̇ −θ̇ sinφ 0

 .
Then

˙̂
Ω =

 0 −θ̈ cosφ + θ̇ φ̇ sinφ φ̈

θ̈ cosφ − θ̇ φ̇ sinφ 0 θ̈ sinφ + θ̇ φ̇ cosφ

−φ̈ −θ̈ sinφ − θ̇ φ̇ cosφ 0

 .
and

Ω̂
2 =

−(φ̇ 2 + θ̇ 2 cos2 φ) −θ̇ φ̇ sinφ −θ̇ 2 cosφ sinφ

−θ̇ φ̇ sinφ −θ̇ 2 θ̇ φ̇ cosφ

−θ̇ 2 cosφ sinφ θ̇ φ̇ cosφ −(φ̇ 2 + θ̇ 2 sin2
φ)

 .
Substituting these in the Newton’s equations

˙̂
ΩX =−Ω̂

2X− ||Ω̂X ||2

r2 X .

we have

r

 φ̈

θ̈ sinφ + θ̇ φ̇ cosφ

0

= r

 θ̇ 2 cosφ sinφ

−θ̇ φ̇ cosφ

(φ̇ 2 + θ̇ 2 sin2
φ)

− (φ̇ 2 + θ̇
2 sin2

φ)

0
0
r

 .
Which gives us

φ̈ = θ̇
2 cosφ sinφ ,

sinφθ̈ = −2θ̇ φ̇ cosφ .

Note that these equations are not defined when φ = 0,π since for these values the frame b is
ill defined.
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Answer to Exercise 3.7

Assume e is inertial and let f e be the resultant fundamental force felt in a frame e. Newton’s
equations in the inertial e frame are

ẍ =
1
m

f e.

Then we know that the Newton’s equations in a parallely translating frame are

Ẍ =−mö+ f e =
1
m

Fb, (4.1)

where o is the co-ordinates of the origin of b(t) with respect to e.

For the problem of the elevator let e be the frame fixed on the Earth and let b(t) be the
frame fixed on the elevator. The weight measured by a scale is the total force exerted by the
scale W . The total fundamental force acting on the person as a result of particle interactions
as expressed in the e frame is

f e =−mg+W.

When the elevator is at rest,
ö = 0,

and hence from Newton’s equations in the moving frame (4.1) we have

mẌ = f e =−mg+W,

The person is at rest with respect to the elevator and therefore X = const and Ẍ = 0 and hence

0 =−mg+W,

and
W = mg.

Thus when the elevator is at rest the weight measured by the elevator is the correct weight of
the person.

When the elevator is moving at a constant acceleration of g,

ö = g,

and hence from Newton’s equations in the elevator given by (4.1) we have

mẌ =−mg+ f e =−mg+(−mg+W ) =W −2mg,

The person is at rest with respect to the elevator and therefore X = const and Ẍ = 0 and hence

0 =W −2mg,
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and
W = 2mg.

Thus when the elevator is accelerating constantly at g, the weight measured by the scale is
twice as large as the correct weight of the person.

When the elevator is moving at a constant acceleration of g but gravity is absent, Then

f e =W.

and
ö = g,

and from Newton’s equations in the translating frame (4.1) we have

mẌ =−mg+ f e =−mg+W.

The person is at rest with respect to the elevator and therefore X = const and Ẍ = 0 and hence

0 =−mg+W,

and
W = mg.

Thus when the elevator is moving at a constant acceleration of g but gravity is absent the
weight read by the scale is the same as the correct weight of the person.

Answer to Exercise 3.9

Consider the representation of a point P in space. To do this we rely on the space-time assump-
tions of Galelian mechanics that imply space to be Euclidean. Thus we may pick another point
O in space and setup an orthonormal frame e at O. Let x be the representation of P in e. That
is let OP = ex. The Euclidian assumption of space implies that the distance from O to P is

d(O,P) = ||x||=
√
〈〈x,x〉〉=

√
xT x.

Let R ∈ SO(3) be a special orthogonal matrix and let b be the orthonormal frame such that
b = eR and the origin of b coincides with that of e. Now let X be the representation of P in the
b frame. Then we know that x = RX . Then the Euclidean assumption implies that the distance
from O to P can also be expressed as

d(O,P) = ||X ||=
√
〈〈X ,X〉〉=

√
XT X .

Note that this is true for all points P and hence for any X
Thus

XT X = ||X ||2 = ||x||2 = xT x = (RX)T RX = XT (RT R)X
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and hence we have

XT (I3×3−RT R)X = 0.

for any X ∈ R3. Thus we have that
RT R = I3×3.

This also says that RT is the unique inverse of R. Hence we also have

RRT = I3×3.

Since

det(I3×3) = det(RT R) = det(RT )det(R) = det(R)det(R) = (det(R))2.

Thus (det(R))2 = 1 and hence det(R) =±1. Consider a continuous curve in SO(3) given by
C(t) such that C(0) = I3×3 and C(1) = R. That is a curve that begins at I3×3 and ends at R.
Since det : SO(3)→ R is a continuous map we know that det(C(t)) must vary continuously.
But we have seen that det(C(t)) =±1. Hence since det(C(0)) = det(I3×3) = 1 we have that
det(C(1)) = det(R) = 1. By considering frames we can show that any R ∈ SO(3) can be
continuously deformed to the case that corresponds to no rotation. That is to I3×3 and thus
det(R) = 1 for all R ∈ SO(3).

Answer to Exercise 3.19

The following typed up solution is courtesy of Kanishke Gamagedara E/09/078

Assume that the earth fixed frame e is inertial.

Fig. 4.2 Used frames

108



Lecture notes by D. H. S. Maithripala, Dept. of Mechanical Engineering, University of Peradeniya

Considering the figure,

c = bR1(φ) (4.2)
b = eR3(θ) (4.3)

where,

R1(φ) =

1 0 0
0 cosφ −sinφ

0 sinφ cosφ

 , R3(θ) =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 .
Then we also have

Ω̂1 = RT
1 Ṙ1 =

0 0 0
0 0 −φ̇

0 φ̇ 0

 , Ω̂3 = RT
3 Ṙ3 =

0 −θ̇ 0
θ̇ 0 0
0 0 0

 .
From (4.2) and (4.3), we get c = eR3R1︸︷︷︸

R

= eR.

The position of the small ball x can be written as,

ex = cX = eRX

Distance to the ball from the center of the disk (OP) can be written using the c frame as
follows,

OP =
[
c1 c2 c3

]︸ ︷︷ ︸
c

0
y
d


︸︷︷︸

X

= cX .

The same position of the ball P can be written using the e frame as

OP =
[
e1 e2 e3

]︸ ︷︷ ︸
e

x1
x2
x3


︸ ︷︷ ︸

x

= ex = cX = eRX

The position representation of the point P with respect to the e frame given by x and the
representation with respect to the frame c that is given by X are related by,

x = RX (4.4)

Differentiating (4.4) twice with respect to time,

ẍ = R
(

Ω̂
2X +2Ω̂ Ẋ +

˙̂
ΩX + Ẍ

)
(4.5)

where,

109



Lecture notes by D. H. S. Maithripala, Dept. of Mechanical Engineering, University of Peradeniya

Ẋ =

0
ẏ
0

 , Ẍ =

0
ÿ
0

 ,

Ω̂ = RT Ṙ = (RT
1 Ω̂3R1 + Ω̂1) =

 0 −θ̇ cosφ θ̇ sinφ

θ̇ cosφ 0 −φ̇

−θ̇ sinφ φ̇ 0

 ,

˙̂
Ω =

 0 −θ̈ cosφ + θ̇ φ̇ sinφ θ̈ sinφ + θ̇ φ̇ cosφ

+θ̈ cosφ − θ̇ φ̇ sinφ 0 −φ̈

−θ̈ sinφ − θ̇ φ̇ cosφ φ̈ 0



Ω̂
2 =

 −θ̇ 2 φ̇ θ̇ sinφ φ̇ θ̇ cosφ

φ̇ θ̇ sinφ −(θ̇ 2 cos2 φ + φ̇ 2) θ̇ 2 sin2φ/2
φ̇ θ̇ cosφ θ̇ 2 cos2φ/2 −(θ̇ 2 sin2

φ + φ̇ 2)


Assuming the Earth fixed e-frame is inertial we have f = mẍ in the e-frame,

f = mR
(

Ω̂
2X +2Ω̂ Ẋ +

˙̂
ΩX + Ẍ

)
(4.6)

The fundamental forces on the mass are ,

e f = cF + e fg = eR

FN1
−ky
FN3


︸ ︷︷ ︸

F

+e

 0
0
−mg


︸ ︷︷ ︸

fg

f = RF + fg and hence RT f = F +RT fg. Substituting values in (??) and simplifying, we get,FN1
−ky
FN3

−
 0

mgsinφ

mgcosφ

=

m
(
θ̈(d sinφ − ycosφ)−2θ̇ ẏcosφ +2φ̇ θ̇(d cosφ + ysinφ)

)
m
(
ÿ−dφ̈ − y(φ̇ 2 + θ̇ 2 cos2 φ)+dθ̇ 2 cosφ sinφ

)
m
(
φ̈y+2φ̇ ẏ−d(φ̇ 2 + θ̇ 2 sin2

φ)+ yθ̇ 2(cos2φ)/2
)


(4.7)

From the second row in (4.7), we can solve this system. First and third rows can be used to
find FN1 and FN2. Simplifying the second row,

ÿ+ y
(

k
m
− φ̇

2− θ̇
2 cos2

φ

)
+dθ̇

2 sinφ cosφ −dφ̈ +gsinφ = 0 (4.8)
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Answer to Exercise 3.34

The following typed up solution is courtesy of Kanishke Gamagedara E/09/078

In section-1.2.6 we showed that the constraint forces a bead and the equations of motion of
the bead when it is constrained to move in a rotating hoop is given byFN1

FN2
0

= m

 −rθ̈ cosφ +2rφ̇ θ̇ sinφ

−rφ̇ 2− rθ̇ 2 cosφ 2 +gsinφ

rθ̇ 2 sinφ cosφ + rφ̈ +gcosφ

 , (4.9)

where the first two rows can be used to find the forces FN1 and FN2 and the third row can be
used to describe the motion of the bead as follows:

rφ̈ + cosφ
(
g+ θ̇

2 sinφ
)
= 0. (4.10)

The coordinates θ ,φ were chosen as shown in Figure 4.4 and 4.5.

Fig. 4.3 Bead on a Hoop.

Note that we see from equation (4.10) that the bead dynamics are influenced by the hoop
dynamics due to the presence of the θ̇ 2 term present in (4.10). Below we will use Euler’s rigid
body equations to write down equations that describe the hoop dynamics. The moments acting
on the hoop are

cT = c

T1
T2
T3

= e

T 1
e

T 2
e
0

+ c

 0
−FN1r sinφ

FN1r cosφ

= c

RT
3 (θ)

T 1
e

T 2
e
0

+
 0
−FN1r sinφ

FN1r cosφ

 .
From this we have

T = RT
3 (θ)

T 1
e

T 2
e
0

+
 0
−FN1r sinφ

FN1r cosφ

 .
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Fig. 4.4 Top view Fig. 4.5 Perpendicular to Hoop

Angular velocity matrix of the hoop is given by Ω̂h = RT
3 Ṙ3 and hence we see that

Ωh =

0
0
θ̇


Substituting these in Euler’s rigid body equations in the hoop fixed frame c, IΩ̇ = IΩ×Ω +T
where I= diag(Ix,Iy,Iz) we get, 0

0
Izθ̈

=

0
0
0

+R3(θ)
T

T 1
e

T 2
e
0

+
 0
−FN1r sinφ

FN1r cosφ

 (4.11)

From these equations we find
Izθ̈ = FN1r cosφ

and that from (4.9)
(Iz +mr2 cos2

φ)θ̈ −mr2
θ̇ φ̇ sin(2φ) = 0, (4.12)

and hence that the two coupled second order differential equations (4.10) and (4.12) describes
the dynamics of the composite bead and hoop system.

The following MATLAB file1 numerically integrates (4.10) and (4.12) for the parameters
Iz = 1,m = 1,r = 1,ρ = 1,d = 1,g = 1 with suitable initial conditions.

MATLAB Code

function Hoop_simulation3D
m=1;
r=1;
d=1;

1 This simulation is courtesy of K. G. B. Gamagedara (E/09/078).
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rho=1;
g=1;
M=piˆ2*dˆ2*r*rho/2;
I3=M*rˆ2/2;
X0=[0 pi/2*3 0 0];

[T,Y] = ode45(@dydt,0:.1:10,X0);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function Y = dydt(T,X)
x1=X(1); %theta
x2=X(2); %theta_dot
x3=X(3); %phi
x4=X(4); %phi_dot

x1dot=x2;
x2dot=m*rˆ2*x2*x4*sin(2*x3)/(I3+m*rˆ2*cos(x3)ˆ2);
x3dot= x4;
x4dot=-g*cos(x3)/r-sin(2*x3)*x2ˆ2/2;

Y=[x1dot; x2dot; x3dot; x4dot];
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

figure(1)
plot(T,Y(:,1),’r’)
grid on
hold on
plot(T,Y(:,2),’g’)
plot(T,Y(:,3),’k’)
plot(T,Y(:,4))
hold off

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure(2)
j=1;
while j<=length(T)

theta=Y(j,1);
phi=Y(j,3);
subplot(1,2,1)
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plot3(r*cos(phi)*cos(theta),r*cos(phi)*sin(theta),...
r*sin(phi),’Marker’,’square’,’MarkerSize’,...
2,’MarkerEdgeColor’,’b’,’MarkerFaceColor’,’b’)
grid on
hold on
draw_hoop(theta,360)
axis(.5*[-10 10 -10 10 -10 10])
hold off

subplot(1,2,2)
plot3(r*cos(phi)*cos(theta),r*cos(phi)*sin(theta),...
r*sin(phi),’Marker’,’square’,’MarkerSize’,...
2,’MarkerEdgeColor’,’b’,’MarkerFaceColor’,’b’)
axis(.5*[-10 10 -10 10 -10 10])
grid on
hold on
view([0 0 1])
draw_hoop(theta,360)
hold off

pause(.1)

j=j+1;
end

function draw_hoop(theta,reso)
P=0:2*pi/reso:2*pi;
k=1;
x_h=[];
y_h=[];
z_h=[];
while k<=length(P)

p=P(k);
x_h(k)=r*cos(p)*cos(theta);
y_h(k)=r*cos(p)*sin(theta);
z_h(k)=r*sin(p);
k=k+1;

end
plot3(x_h,y_h,z_h,’r’)

end

end
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Answer to Exercise 3.26

Consider the frames e and b fixed on B1 and B2 respectively. O1 is the origin of e and O2 is
the origin of b. Now let us consider points on B2 as viewed from B1. A point P on B2 will
have representations x and X with respect to e and b respectively. Let O1O2 = ey and b = eRφ

then

x = y+Rφ X , (4.13)

ẋ = ẏ+Rφ
̂̇
φX . (4.14)

If there exists a point O21P on B2 that appears to be fixed in B1 then there exists XI such
that ẋI = 0. If we can show the existence of such a XI then we have shown the existence of an
instantaneous center. If ẋI = 0, from (4.14) it follows that̂̇

φXI = −RT
φ ẏ, (4.15)

XI =
1

φ̇ 2
̂̇
φRT

φ ẏ. (4.16)

That is the point in B2 with representation XI with respect to b and given by (4.16) has zero
velocity with respect to B1. The point O21 is said to be the instantaneous center of B2 with
respect to B1. With respect to B1, every point on B2 appears to instantaneously rotate about
P with angular velocity φ̇ . You are asked to show this in the exercises. In addition if the bodies
B1 and B2 are two convex shaped rigid bodies that are moving relative to each other such that
at each time instance their surfaces are in contact only at one point P then from the assumption
that the bodies are rigid it follows that the relative velocity of the contact point should lie along
the surface (that is perpendicular to the common surface normal through the contact point) .
Thus the instantaneous center of rotation of B2 with respect to B1 (or visa versa) lies along
the common normal to the surfaces at the contact point.

Answer to Exercise 3.27

To prove Kennedy’s theorem consider three rigid bodies B1, B2 and B3 moving in 2-
dimensional Euclidean space. Let e, b and c be frames fixed on B1, B2 and B3 respectively.
At a given particular time instant, without loss of generality, we pick the origins of e and b
to coincide with the instantaneous center O21 of B2 with respect to B1 and the origin c to
coincide with the instantaneous center O31 of B3 with respect to B1. What we need to show
is that the instantaneous center O32 of B3 with respect to B2 lies on the line joining O21 to
O31. To do this we observe points on B3 with reference to B2. Let P be a point on B3. The
representation of P with respect to e is x, with respect to b is Xb and with respect to c is Xc
and let b = eRθ , c = eRφ . Let O21O31 = ey. Then

x = Rθ Xb = y+Rφ Xc. (4.17)

Now differentiating (4.17) we have
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Fig. 4.6 Kennedy’s Theorem

ẋ = Rθ Ẋb +Rθ
̂̇
θXb = ẏ+Rφ Ẋc +Rφ

̂̇
φXc. (4.18)

Let P = O23. The instantaneous velocity of O32 with respect to B2 (and hence the b frame)
and B3 (and hence the c frame) is zero. Thus Ẋb = 0 = Ẋc. Since O31 is the instantaneous
center of B3 with respect to B1 the point O31 has zero instantaneous velocity with respect to
B1. Thus ẏ = 0. Substituting these in (4.18) we have

ẋ = Rθ
̂̇
θXb = Rφ

̂̇
φXc. (4.19)

Using (4.17) we then have ̂̇
θx = ̂̇φ(x− y). (4.20)

and finally that

x =
φ̇

(φ̇ − θ̇)
y. (4.21)

From (4.21) we see that O32 lies on the line joining the instantaneous centers O21 and O31
and we have proved Kennedy’s theorem that the instantaneous centers of three rigid bodies
moving in 2-dimensional Euclidean space lie on the same line. Furthermore (4.21) gives the
ratio of the distances to the instantaneous centers as a function of the relative angular rotations
of the two bodies. Explicitly

O21O23 =
φ̇

(φ̇ − θ̇)
O21O31. (4.22)

By substituting O21O31 = O21O23 +O23O31 in this we also have

O21O23θ̇ +O31O23φ̇ = 0. (4.23)
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Answer to Exercise 3.35

Fig. 4.7 A schematic representation of a free vibration apparatus.

2

Consider figure 4.7. Assume that when z≡ 0 and θ ≡ 0 the system is in equilibrium. Let the
deflection of the spring at this condition be ∆ . By applying Euler’s 3D rigid body equations,

Ṙ = RΩ̂ (4.24)

IΩ̇ = IΩ ×Ω +T. (4.25)

Here

R =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 ,
and hence

Ω̂ =

 0 −θ̇ 0
θ̇ 0 0
0 0 0

 , Ω =

 0
0
θ̇

 .
The inertia tensor of the beam is

I=

 I1 0 0
0 I2 0
0 0 I3

 ,
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where I1,I2,I3 are the inertia components of the body about the b1,b2,b3 axis respectively.
Thus it is easily seen that IΩ ×Ω = 0 and hence (4.25) reduces to:

IΩ̇ = T, (4.26)

The external TorqueT = Tc +Tk +Tg, where Tc and Tk are the force moments (torques) ex-
pressed in the b frame due to the damper force and spring force respectively and Tg is the
force moment due to the gravitational forces.

For small angles sinθ ≈ θ ≈ 0 and cosθ ≈ 1. For small deflections the above small angle
approximations are valid and in the b frame the spring force has the representation,

Fk =

 0
−K(Lkθ +∆ + z)

0

 (4.27)

The point at which this force acts has the representation in the b frame given by

Xk =

Lk
0
0


Thus the torque in the b frame due to the spring force is

Tk = Xk×Fk =

 0
0

−K(Lkθ +∆ + z)Lk

 (4.28)

In the b frame the damper force has the representation,

Fc =

 0
−CLc θ̇

0

 (4.29)

The representation in the b frame of the point of action of the damper force is

Xc =

Lc
0
0

 .
The the force moment due to the damper force is

Tc = Xc×Fc =

 0
0

−CL2
c θ̇

 . (4.30)

In the b frame the gravitational force force has the representation,
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Fg =

 0
Mg
0

 (4.31)

where M is the total mass of the beam and L is the distance from O to the center of mass of
the beam. The representation in the b frame of the point of action of the damper force is

Xg =

L
0
0

 .
The the force moment due to the damper force is

Tg = Xg×Fg =

 0
0

MgL

 . (4.32)

Also

IΩ̇ =

 0
0

I3θ̈

 .
Thus Euler’s rigid body equations (4.25) gives,

I3θ̈ =−CL2
c θ̇ −KL2

kθ +(MgL−KLk∆)−KLkz. (4.33)

Applying rigid body equations at equilibrium conditions we have (MgL−KLk∆) = 0 and
hence for small deflections we have the governing differential equation given below.

I3θ̈ +CL2
c θ̇ +KL2

kθ =−KLk z. (4.34)

Answer to Exercise 3.36

Fix a frame b(t) on the shaft and the arm such that its origin, O, is at the point of intersection
of the arm and the shaft with b1(t) aligned along the arm, b3(t) aligned along the shaft and
pointing upwards and b2(t) aligned so that the frame is right hand oriented. Let e be a fixed
frame such that the origin coincides with O and e3 is aligned along b3. Let φ be the counter
clockwise angle between e1 and b1(t). Then b(t) = eR(t) where

R3(t) =

cosφ −sinφ 0
sinφ cosφ 0

0 0 1


and Ṙ3 = R3 Ω̂3 where

Ω̂3 =

 0 −φ̇ 0
φ̇ 0 0
0 0 0


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Let θ be the counter clockwise angle between the spring and the downward vertical and
l(t) be the length of the spring. Introduce another frame c(t) such that its origin also coincides
with the origin of e and b(t) while c1(t) = b1(t) and c3(t) is along the spring. Then we see
that c(t) = b(t)R1(t) where

R1(t) =

1 0 0
0 cos(π +θ) −sin(π +θ)
0 sin(π +θ) cos(π +θ)

 .
Then we also have that Ṙ1 = R1 Ω̂1 where

Ω̂1 =

0 0 0
0 0 −θ̇

0 θ̇ 0

 .
Then we have c(t) = b(t)R1(t) = eR3(t)R1(t) = eR(t) and hence that R(t) = R3(t)R1(t) and
Ṙ = Ṙ3R1 +R3Ṙ1 = R3Ω̂3R1 +R3R1Ω̂1 = R3R1(RT

1 Ω̂3R1 + Ω̂1) = RΩ̂ . Thus

Ω̂ = RT
1 Ω̂3R1 + Ω̂1 =

 0 φ̇ cosθ −φ̇ sinθ

−φ̇ cosθ 0 −θ̇

φ̇ sinθ θ̇ 0



Ω̂
2 =

 −φ̇ 2 −φ̇ θ̇ sinθ −φ̇ θ̇ cosθ

−φ̇ θ̇ sinθ −(φ̇ 2 cos2 θ + θ̇ 2) φ̇ 2 sin2θ/2
−φ̇ θ̇ cosθ φ̇ 2 sin2θ/2 −(φ̇ 2 sin2

θ + θ̇ 2)


˙̂

Ω =

 0 φ̈ cosθ − φ̇ θ̇ sinθ −φ̈ sinθ − φ̇ θ̇ cosθ

−φ̈ cosθ + φ̇ θ̇ sinθ 0 −θ̈

φ̈ sinθ + φ̇ θ̇ cosθ θ̈ 0


Let us consider the point mass. The representation of the point mass P in e is x(t) and in

c(t) is X(t). Then x(t) = R(t)X(t) and it easily seen that

X(t) =

d
0
l

 .
Differentiating we have

Ẋ(t) =

0
0
l̇

 Ẍ(t) =

0
0
l̈

 .
Recall that Newton’s equations for the particle expressed using the c-frame quantities are

F = RT f = mẍ = m(Ω̂ 2X +2Ω̂ Ẋ +
˙̂

ΩX + Ẍ), (4.35)

where the matrix F is the b(t)-frame representation of the resultant of the fundamental forces
acting on the particle. We find that it is
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F =

 N
mgsinθ

−k(l− l0)+mgcosθ

 .
where N is the constraint force on the particle in the c1 direction and constraints the particle
to only move in the plane perpendicular to the shaft. Now simplifying the Newton’s equations
(4.35) we have

−dφ̇
2−2lφ̇ θ̇ cosθ − lφ̈ sinθ = N, (4.36)

lθ̈ +2l̇θ̇ − φ̇
2 sinθ cosθ l +dφ̈ cosθ = −gsinθ . (4.37)

l̈ +
k
m
(l− l0)− (φ̇ 2 sin2

θ + θ̇
2)l +dφ̈ sinθ = gcosθ , (4.38)

Now lets consider the motion of the rigid body. The body rotates about the e3 axis and
Euler’s rigid body equations give

Izφ̈ = T3, (4.39)

where T3 is the force moment about the b3 = e3 axis. The force acting at the tip of the arm in
the e-frame is

= [b1 b2 b3]Fb =
[

b1 b2 b3
] N

k(l− l0)sinθ

−k(l− l0)cosθ


The representation of the end point, A, of the arm is

OA = [b1 b2 b3]XA =
[

b1 b2 b3
]d

0
0

 ,
Then the force moment about the e3 axis is

force moment = X̃AFb =

0 0 0
0 0 −d
0 d 0

 N
k(l− l0)sinθ

−k(l− l0)cosθ

=

 0
kd(l− l0)cosθ

kd(l− l0)sinθ

 .
Thus T3 = kd(l− l0)sinθ and the rigid body equations (4.40) are

Izφ̈ = kd(l− l0)sinθ . (4.40)

Thus the complete governing equations for the system are (4.38),(4.37) and (4.40). These
are three coupled second order equations of the three configuration variables.

The kinetic energy of the system is

KE = KErigid body +KEparticle.

where the kinetic energy of the rigid body is given by

KErigid body =
Iz

2
φ̇

2,
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and the kinetic energy of the particle is given by

KEparticle =
m
2
||ẋ||2 = m

2
||R(Ω̂X + Ẋ)||2 = m

2
||Ω̂X + Ẋ ||2.

Upon simplification we have that

KEparticle =
m
2

(
−XT

Ω̂
2X +2ẊΩ̂X + ẊT Ẋ

)
=

(Iz +md2 +ml2 sin2
θ)

2
φ̇

2 +
m
2

l̇2 +
ml2

2
θ̇

2 +2d sinθφ̇ l̇ +2d cosθ lφ̇ θ̇

This is a quadratic form in the velocities.

Answer to Exercise 3.38

Fig. 4.8 The Centrifugal Governor

We will fist consider a one link of the governer. Consider a frame a that is fixed to the
body of the governor such that a3 aligns along the axis of rotation of the governor and a2 is
perpendicular to the plane containing the links of the governor as shown in figure-4.8. Let b
be a frame fixed to the body of the governor such that b2 = a2 and b1 is along one of the links
of the governor as shown in figure-4.8. Let e be an earth fixed frame such that e3 = a3 and
a = eR3(θ) where

R3(θ) =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1


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We also see that b = aR2(α) where

R2(α) =

 cosα 0 sinα

0 1 0
−sinα 0 cosα


Then we see that since b = aR2 = eR3R2 = eR that R = R3(θ)R2(α). Thus

Ω̂ = RT Ṙ = (RT
2 Ω̂3R2 + Ω̂2) =

 0 −θ̇ cosα α̇

θ̇ cosα 0 θ̇ sinα

−α̇ −θ̇ sinα 0

 ,

˙̂
Ω =

 0 −(θ̈ cosα− θ̇ α̇ sinα) α̈

(θ̈ cosα− θ̇ α̇ sinα) 0 (θ̈ sinα + θ̇ α̇ cosα)
−α̈ −(θ̈ sinα + θ̇ α̇ cosα) 0

 ,

Ω̂
2 =

−(α̇2 + θ̇ 2 cos2 α) −α̇θ̇ sinα −θ̇ 2 sinα cosα

−α̇θ̇ sinα α̇2 α̇θ̇ cosα

−θ̇ 2 sinα cosα α̇θ̇ cosα −(α̇2 + θ̇ 2 sin2
α)


Let X be the representation of the rotating mass m of the governor in the b frame. That is

X =

L
0
0


The fundamental forces due to particle interactions on the Mass m are due to the gravita-

tional interaction in e3 direction and the resultant reaction force that has the representation
Fr = [F1 F2 F3]

T in the b-frame due to the connection to the link. Let f g be the representation
of the gravitational force in the e-frame. That is f g = [0 0 −mg]T . Therefore,

e f = e f g +bFr

= e

 0
0
−mg


︸ ︷︷ ︸

f g

+b

F1
F2
F3


︸ ︷︷ ︸

F

= e

 0
0
−mg

+R

F1
F2
F3

= eR

RT

 0
0
−mg

+
F1

F2
F3


︸ ︷︷ ︸

F

= eRF

and hence we have that

F = RT

 0
0
−mg

+
F1

F2
F3

=−mg

−sinα

0
cosα

+
F1

F2
F3

 .
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We know that Newtons’ Equations in the moving frame b are,

F = m(Ω̂ 2X +2Ω̂ Ẋ +
˙̂

ΩX)

Which gives

−mg

−sinα

0
cosα

+
F1

F2
F3

=−mL

(α̇2 + θ̇ 2 cos2 α)
α̇θ̇ sinα

θ̇ 2 sinα cosα

−mL

 0
α̇θ̇ sinα− θ̈ cosα

α̈

 (4.41)

Assume that the mass of the links are negligible and the bottom links are very thin
rods. Let the inertia tensor of the upper link expressed in the link fixed body frame b be
I= diag{Iz,Il,Il}.

The rigid body equations for the link are given by

IΩ̇ = IΩ ×Ω +T

where T is the total force moment acting on the link. This is equal to the total moment due
to the reaction force −Fr acting at the end of the link and the reaction moments at the pivot
point of the link. Let Mr = [M1 0 M3]

T be the representation of the reaction moments in the
b-frame. Hence the total force moment is given by

T = X× (−Fr)+Mr =

 M1
F3L

M3−F2L

 .
Also we have

IΩ =

−Izθ̇ sinα

Ilα̇

Il θ̇ cosα

 , IΩ̇ =

−Iz(θ̈ sinα + θ̇ α̇ cosα)
Ilα̈

Il(θ̈ cosα− θ̇ α̇ sinα)



IΩ ×Ω =−

 0
(Il− Iz)θ̇

2 cosα sinα

−(Il− Iz)θ̇ α̇ sinα


Thus from the Euler’s rigid body equations we have M1

F3L
M3−F2L

=

 −Iz(θ̈ sinα + θ̇ α̇ cosα)
Ilα̈ +(Il− Iz)θ̇

2 cosα sinα

Il(θ̈ cosα− θ̇ α̇ sinα)− (Il− Iz)θ̇ α̇ sinα

 (4.42)

Substituting in (4.41) we have

−mg

−sinα

0
cosα

+
 F1

1
L

(
(2Il− Iz)θ̇ α̇ sinα− Il θ̈ cosα +M3

)
1
L

(
Ilα̈ +(Il− Iz)θ̇

2 cosα sinα
)

=−mL

 (α̇2 + θ̇ 2 cos2 α)
2α̇θ̇ sinα− θ̈ cosα

θ̇ 2 sinα cosα + α̈


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Thus upon simplification we have that the motion of the governor mass is described by the
following equations:

−mL(θ̇ 2 sin2
α + α̇

2)−mgsinα = F1, (4.43)
1
L

(
Ilα̈ +(Il− Iz)θ̇

2 cosα sinα
)
= F3, (4.44)

−Iz(θ̈ sinα + θ̇ α̇ cosα) = M1, (4.45)

(Il +mL2)θ̈ cosα− (2Il +2mL2− Iz)θ̇ α̇ sinα = M3, (4.46)

(Il +mL2)α̈ +(Il +mL2− Iz)θ̇
2 cosα sinα−mgLcosα = 0. (4.47)

By assigning another frame a′ to the other link in similar fashion as above as we will find
that constraint forces and moments and the equation of motion of that link are also given by
the same above equations. Thus if the control moment applied about the a3 axis on the entire
governor is τu then we have that the equations of motion of the governor are given by(

(Il +mL2)cos2
α + Iz sin2

α)
)

θ̈ cosα−2(Il +mL2− Il)θ̇ α̇ sinα cosα = τu, (4.48)

(Il +mL2)α̈ +
(
(Il +mL2− Iz)θ̇

2 sinα−mgL
)

cosα = 0. (4.49)

Consider the case where the governor is rotating at a constant angular rate of θ̇(t) ≡ Ω .
Then the constraint forces and moments reduce to

−mL(Ω 2 sin2
α + α̇

2)−mgsinα = F1,

1
L

(
Ilα̈ +(Il− Iz)Ω

2 cosα sinα
)
= F3,

−Iz(Ωα̇ cosα) = M1,

−(2Il +2mL2− Iz)Ωα̇ sinα = M3,

and the motion of the spherical masses are described by

(Il +mL2)α̈ +
(
(Il +mL2− Iz)Ω

2 sinα−mgL
)

cosα = 0. (4.50)

Notice that this ODE admits the steady state solutions, α(t)≡ π/2, α(t)≡−π/2 α(t)≡ ᾱ

where

sin ᾱ =
mgL

Ω 2(Il +mL2− Iz)
. (4.51)

Answer to Exercise 3.43

Let e,a,b,c be three orthonormal frames such that e is earth fixed at the point O1, origin of
a is at O1 and a = eRa, origin of b is at O1 and b = aRb, and origin of c is at O2 (the pivot
point of links 1 and 2) and c = bRc. Let G1,G2 be the center of mass of the two linkages. Let
O1G1 = bXg1 and O2G2 = cXg2 . Let O1O2 = bXo2 and Let O2P = cXcp. Let O1P = exp.
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Fig. 4.9 RLC Circuit

Ra = R3(α),Rb = R1(θ),Rc = R1φ , Xg1 = [0 L2 0]T , Xg2 = [0 L4 0]T , Xo2 = [0 L1 0]T and
Xcp = [0 L3 0]T . Then

exp = bXo2 + cXP

xp = RL1 Xo2 +RL2 Xcp

where RL1 = RaRb and RL2 = RaRbRc.

xg1 = RL1Xg1

xg2 = RL1 Xo2 +RL2Xg2

ṘL1 = RL1Ω̂L1

ṘL2 = RL2Ω̂L2

ẋg1 = RL1Ω̂L1Xg1

ẋg2 = RL1Ω̂L1Xg1 +RL2Ω̂L2Xg2

ẋg1 =

 L2θ̇ sin(α)sin(θ)−L2α̇ cos(α)cos(θ)
−L2α̇ sin(α)cos(θ)−L2θ̇ cos(α)sin(θ)

L2θ̇cos(θ)


ẋg2 =

 θ̇ sin(α)(L4 sin(φ +θ)+L1 sin(θ))− α̇ cos(α)(L4 cos(φ +θ)+L1 cos(θ))+L4φ̇ sin(φ +θ)sin(α)
−α̇ sin(α)(L4 cos(φ +θ)+L1 cos(θ))− θ̇ cos(α)(L4 sin(φ +θ)+L1 sin(θ))−L4φ̇ sin(φ +θ)cos(α)

θ̇(L4 cos(φ +θ)+L1 cos(θ))+L4φ̇ cos(φ +θ)


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Ω̇L1 =

 θ̇

α̇ sin(θ)
α̇ cos(θ)

 Ω̇L2 =

 φ̇ + θ̇

α̇ sin(φ +θ)
α̇ cos(φ +θ)


KE =

1
2

M1||ẋg1||
2 +

1
2

M2||ẋg1||
2 +

1
2

IL1ΩL1 ·ΩL1 +
1
2

IL2ΩL2 ·ΩL2

PE = ((L1 +L2)sin(θ)+L4 sin(φ +θ))g

Generalized external force
f e = τα dα + τθ dθ + τφ dφ .
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