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Preface

The word ‘thermodynamics’ is derived from the greek words ‘thermo’ meaning heat and ‘dy-
namics’ meaning power. Today it is used to describe the interplay between energy and work.
It arose out of the attempt to get work out of energy and was the driving force behind the in-
dustrial revolution. The formal study of thermodynamics is based on the quest for describing
empirical observations using the fewest number of laws or axioms. These laws are, basically,
general statements about the behavior of the universe as we perceive it through our senses.
They are expressed using the universal language of mathematics. This quest that intensified in
the 17th century gave rise, by the mid of the 19th century, to four fundamental axioms that de-
scribe the thermodynamic behavior of everyday systems. All hitherto conducted experiments
have verified these axioms and no experiment has ever been able to contradict these axioms.
Thus they have been accepted as fundamental laws that govern the thermodynamic behavior
of observable physical systems. In the following notes I will attempt to describe these laws,
the road to their discovery, their implications, and limitations. The road to the discovery of
these four fundamental laws of thermodynamics was not clean. It was iterative. The discussion
will not follow its chronological development but will follow an axiomatic development that
is similar to that of euclidean geometry that you are familiar with. We will begin by making
a few definitions and making a few assumptions. Then we will state the laws using these def-
initions, discuss the motivation for the statement of the laws, and then consider the physical
implications of these laws. Specifically we will see that these laws enforce constraints on the
amount of energy that can be converted into work.

Historically the laws of thermodynamics were developed phenomenologically using a sys-
tems perspective1. Later towards the end of the 19th century and the beginning of the 20th
century it was established that everything was made-up of ‘particles’. In this context it be-
came a challenge to interpret or validate the four fundamental laws of thermodynamics using
this microscopic picture of matter. The quest was successfully completed by Maxwell, Boltz-
mann, and Gibbs. In this notes we will consider both the phenomenological and microscopic
aspects in an attempt to gain a better understanding of the four fundamental laws of thermody-
namics. The topic is a classic example of the application of the process of logic and reasoning.
I invite the reader to think it through for themselves and reason out the plausibility of these
four fundamental laws and deduce the many physical implications of these laws of nature.

1 This point of view is also called the macroscopic view.
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Through this process we will also hope to gain a better understanding of key thermodynamic
notions such as temperature, internal energy, heat, and entropy.

This is a compilation of notes that originated as class notes for GP111 at the University of
Peradeniya in the year 2015. It is an attempt by me to present thermodynamics in an intuitive
axiomatic way. I have tried to strike a balance between simplicity and rigor. They are far from
complete and I will be frequently updating them as time permits. I am deeply indebted to
all the students who have suffered through them and have tried out the exercises and have
provided me with valuable input. I am sure there are many errata and will greatly appreciate
if you can please bring them to my notice by sending an e-mail to mugalan at gmail.com. The
treatment contained in the book is based on the excellent lecture notes by R. P. Feynman [5]
and H. Gould and J. Tobochnik [6]. For an interesting historical perspective I refer the reader
to the freely available e-book by J. M. Powers [1] while I refer the reader to [4, 3] for a more
advanced mathematically rigorous axiomatic treatment of the subject.

Peradeniya, Sri Lanka, D. H. S. Maithripala
June 25, 2019
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Chapter 1
The System, Surrounding, and the Universe

It turns out that all of the fundamental concepts of thermodynamics can be understood quite
intuitively if we take for granted that everything is made up of particles. This assumption is
thought to be the most fundamental hypothesis of nature. Thus let us begin our quest by stating
it as an axiom.

Axiom 1.1 Particle Hypothesis: Everything is made-up of indivisible units called par-
ticles that are never still.

Before proceeding any further let us ask if it is reasonable to make such a daring assump-
tion. What evidence do we have to justify such a claim? For instance is the air that we breath
made of particles? The zig-zag random dance that a speck of dust does in a beam of sunlight
that falls into a dark room tells us that air is indeed made out of particles that are moving in a
never ending manner1. Around the early 1800s, while looking through a microscope at pollen
trapped in cavities, the botanist Robert Brown noticed that the pollen moved through the water
in a random zig-zag irregular kind of way similar to that of the dust particles2. Albert Einstein
explained this, mathematically, as a consequence of the particle nature of water. He showed
that the very high energy motion of the water molecules was the cause of the random zig-zag
motion of pollen in water and thereby establishing the particle nature of matter. Today this
particle hypothesis of matter has been experimentally and theoretically justified irrefutably
and we will take it as one of the mysterious ways in which we perceive nature to behave.
Specifically, as of now it has been established that matter in the Universe is made of particles
that we call atoms and that each of these atoms are made up of more fundamental particles
called electrons, protons, and neutrons3. Armed with this basic assumption of the particle na-
ture of matter, let us proceed to define a few terms that are necessary when one has to deal
with getting work out of something4.

1 Can you reason out why?
2 This type of motion is called Brownian Motion.
3 It is also known that protons and neutrons are made up of even more fundamental particles called
Quarks.
4 The driving force behind the study of thermodynamics.
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(a) Closed System (b) Open System

Fig. 1.1 Schematic representation of a system.

Definition 1.1. Closed System: A specific set of particles will be called a closed sys-
tem.

Definition 1.2. Open System: A specified volume in space where particles are allowed
to move in and out of the volume will be called an open system. The specified volume in
space is usually called the control volume.

Definition 1.3. Macroscopic System: Roughly speaking, a macroscopic system is a
system with a volume that is visible to the naked eye. A little more precisely stated a
macroscopic system is a system of a large number of particles so that statistical properties
of the collection of particles can be defined sufficiently accurately.

Typically the number of particles contained in such a system is of the order of the Avo-
gadro’s number5, NA = 6.0221× 1023. In this course we will only consider the thermody-
namics of macroscopic systems and hence we will often omit the word macroscopic when
referring to such systems and call them simply systems. The size of an atom and the inter-
atomic distances in solids is of the order of 10−10m. Thus we see that even a tiny speck of
dust6 that is of roughly the volume of 10−1×10−1×10−1 mm3, has about 1018 particles.

Definition 1.4. Surrounding: The surrounding is defined to be everything else other than
the system of interest.

Definition 1.5. Universe: The universe is defined to be the system and the surroundings.
That is everything there is in existence.

5 This peculiar looking number was traditionally chosen by Chemists since the mass of this many
number of carbon atoms of isotope 12 turned out to be exactly 12 grams.
6 The smallest objects that are visible to the naked eye are about 60µm = 0.06mm.
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Definition 1.6. System Boundary: The interface between a system and the surrounding
is defined to be the system boundary.

Note that the universe, being everything there is in existence, can be considered a closed
system by definition.
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Chapter 2
Kinetic Theory of Gases and the Ideal Gas Law

Having defined a few terms of interest let us begin our study of thermodynamics by inves-
tigating the behavior of a collection of a large number of gas particles. The experience we
have with observing the irregular zig-zag motion1 of specks of dust and the many scientific
experiments and observations regarding a system of gas particles tell us that the gas particles
are moving incessantly. As a first step we will assume that these moving gas particles do not
interact with each other except when they ‘collide’ with each other. Such a system is called
an ideal gas and they do not exist in reality. However there are certain gases that behave ap-
proximately in this fashion. Furthermore consideration of this ideal situation may allow us to
derive explicit expressions to model its behavior. Doing so will help us understand the ther-
modynamic behavior of more general systems a little more clearly. Thus we will consider this
ideal situation first. The particles that makeup a gas are called the gas molecules. A molecule
can be a single atom like in He or Ar or a molecule can be made up of several atoms like in
H2, O2, CO2 or NH3.

Fig. 2.1 The irregular motion of widely spaced gas particles inside a container. Figure courtesy of
http://2012books.lardbucket.org/books/the-basics-of-general-organic-and-biological-chemistry/

1 Brownian motion.
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2.1 Thermodynamic equilibrium

How can we define the behavior of a collection of an extremely large number2 of moving
molecules? Clearly, from a practical point of view, the extremely large number prevents us
from keeping track of each and every molecule. Thus the best that we can hope for is to
find a few number of quantities that in some sense will capture the collective behavior of the
molecules. In this search, the first question that we need to answer is: do such quantities exist?

May be the best way to answer these questions for ourselves is to think of our ordinary
experience with gaseous systems and use our imagination to hypothesize a situation that will
give rise to the observations we make. For instance consider a balloon filled with air. We have
observed that there are some properties of the entire collection of gas molecules in the ballon
that can be easily quantified3 such as the mass and volume of the entire system of particles.
We have observed that these quantities do not change with time. We have also noticed that the
more air we blow into the balloon the heavier it gets and the bigger it gets. Thus could these
quantities be used to represent the collective behavior of all the molecules. Well, why not?
Such quantities that define some measure of the collective steady behavior of a large number
of particles are called thermodynamic properties or macroscopic properties of the system.

Do there exist other quantities such as the mass and the volume? If we think a little bit
more about the balloon we would realize that something inside the balloon is preventing the
balloon from collapsing in. That is, these moving molecules, some how, apply a force on the
inside surface of the balloon. We will also notice that the magnitude of the force that we have
to exert in order to squeeze the balloon is pretty much the same everywhere on its surface
and that this force remains the same over time. Thus the force per unit area, which is called
pressure, acting on the surface of the ballon could also serve as another macroscopic property
that captures the collective behavior of the system of molecules.

How does this pressure arise? It is not too hard to imagine that may be, similarly to what
might happen if we throw a bunch of pebbles at a screen, the constant bombardment of the
moving gas molecules is the reason for this pressure exerted on the inside surface of the bal-
loon. More specifically each molecule upon collision with the molecules of the inside surface
of the balloon ‘bounces’ off causing a change in the momentum of the gas molecules. But the
principle of conservation of momentum of Galelian mechanics tells us that there should be an
equal and opposite change in the momentum of the molecules of the balloon that take part in
the collision as well. The rate of the change of the momentum of the molecules of the balloon
is by definition the force felt by the balloon. Hence the rate of change of momentum of the
molecules of the balloon per unit area that occurs due to the constant bombardment of the air
molecules on the balloon is the cause of the pressure inside the balloon. But why is this pres-
sure the same everywhere on the inside surface? Well the only plausible explanation for this
observation is that the molecules must behave, in some sense, more or less in the same manner
every where inside the balloon. Therefore resulting in, on average, the same rate of change of
momentum transfer due to collisions. We will use the term thermodynamic equilibrium state
or macroscopic state to denote such a condition of ‘uniform time invariant collective behav-

2 Of the order of the Avogadro’s number.
3 Measured.
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ior’ of the set of molecules. More specifically we use the term thermodynamic equilibrium
state4 to refer to a certain steady collective behavior of the molecules.

At this point we should ask ourselves, under what circumstances would the individual be-
havior of billions and billions of moving molecules give rise to such uniform time invariant
collective behavior? It will also be very useful if we can quantify this steady collective be-
havior. If we assume that energy of the universe is conserved then we could imagine that in
this steady state all particle collisions must be elastic. That is, in this steady state, the total
sum of the center of mass kinetic energy5 of the molecules involved in the collision are the
same before and after the collision. If this were not true then we should observe that either the
balloon molecules increase in energy and the gas molecules decrease in energy or the balloon
molecules decrease in energy and the gas molecules increase energy. Furthermore we observe
that in such a steady condition the gas does not flow in any particular direction. That is, in
this steady state, on average there are no preferred directions for the motion of the molecules.
That is we specifically assume that

i.) particle collisions are elastic,
ii.) there are no preferred directions of motion for the molecules.

Under these reasonable assumptions one can use the principle of conservation of linear mo-
mentum6 to show that the magnitude of the velocity of a particle with respect to the center of
mass frame does not change in a collision and that the only thing that changes is its direction of
motion and consequently the time average of the center of mass kinetic energy of a molecule
remains constant over time and that this quantity is the same for all the molecules. Thus it is
reasonable to assume that center of mass kinetic energy, averaged over all the molecules, at
any particular instant of time is in fact independent of time and that this quantity is the same as
the center of mass kinetic energy of any particular molecule averaged over time. This is called
the ergodic hypothesis. The profound consequence of this hypothesis is that the average center
of mass kinetic energy of a molecule, measured with respect to a frame fixed to the centre of
mass of the molecules constituting the system, will now have a well defined meaning. Thus
we could use it as the quantifying and defining property of thermodynamic equilibrium. We
state this formally below:

Definition 2.1. Thermodynamic Equilibrium: A collection of molecules (a closed sys-
tem) is said to be in thermodynamic equilibrium if the center of mass kinetic energy of a
molecule is well defined.

Sticking to the convention used by Physicists we will use 〈x〉 to denote the average of a
given property x of a molecule. For instance if v denotes the magnitude of the center of mass
velocity of a molecule 〈v〉 will denote the average of it. Using this notation the well defined

4 Or thermodynamic state for short.
5 The kinetic energy is computed with respect to an inertial frame with origin coinciding with the center
of mass of the collection of molecules.
6 Newton’s laws.
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average center of mass kinetic energy of a given molecule can be denoted by
〈

mpv2

2

〉
where

mp is the mass of the molecule and v denotes the magnitude of the center of mass velocity of
the molecule. It can also be shown that item ii.) of the above assumptions also imply that at
thermodynamic equilibrium

〈v2
x〉= 〈v2

y〉= 〈v2
z 〉,

〈v2
x + v2

y + v2
z 〉= 〈v2

x〉+ 〈v2
y〉+ 〈v2

z 〉,

where vx,vy,vz are the components of the velocity of a molecule expressed in the inertial frame
with origin coinciding with the center of mass of the collection of molecules.

Exercise 2.1. A cylinder contains a mixture of CO2 and O2. What can you say about the aver-
age center of mass speed of the molecules when the mixture is in thermodynamic equilibrium.

2.2 Absolute Temperature

The fact that the average kinetic energy of the center of mass motion of all the interacting
molecules are the same implies that one can assign this number to describe the equilibrium
condition itself. Historically the term temperature was used to define this steady collective be-
havior of the molecules called thermodynamic equilibrium way before people came to realize
the particle nature of matter7. To coincide with the historically defined notion of temperature
one defines in this microscopic picture the absolute temperature to be a certain fraction of the
average center of mass kinetic energy of the molecules. That is one can define the absolute
temperature, T , to be given by

T =
2

3kB

〈
mpv2

2

〉
,

where kB is the Boltzmann constant8.
For a mono-atomic gas such as Ar the three degrees of freedom of the center of mass

motion comprises the only degrees of freedom and hence the total kinetic energy, that we will
abbreviate as KE, of the Ar gas molecule is the total average kinetic energy of the center of
mass motion of the molecule. For other complicated gasses such as O2 or NH3 there exists
degrees of freedom other than the center of mass motion and hence the total average kinetic
energy of the entire molecule is more than the kinetic energy of the center of mass motion. For
instance there may be rotations and vibrations internal to the molecule due to the increased
degrees of freedom in the molecule. A single atom has three degrees of freedom. Thus a
molecule that is made of m number of atoms will, in general, have 3m degrees of freedom.
For instance a O2 molecule has six degrees of freedom, a CO2 molecule has nine degrees of
freedom while a NH3 molecule has twelve degrees of freedom. In general consider the total
kinetic energy of a molecule that contains r degrees of freedom. Since we can imagine that
each degree of freedom interacts with each other and that when in equilibrium the average

7 We will discuss this viewpoint a little later.
8 kB = 1.38066×10−23JK−1
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kinetic energy of each degree of freedom must also be the same, one sees that the total kinetic
energy of a molecule, KE, must be equally distributed among all of its degrees of freedom.
Thus the total kinetic energy of a molecule per degree of freedom must equal to one third of
the center of mass kinetic energy of the molecule:

KE
r

=
1
3

〈
mpv2

2

〉
.

Thus we have KE/r = kBT/2, which says that kBT/2 is equal to the total average kinetic
energy of the molecule per degree of freedom. For the convenience of remembering we take
this as the formal definition of absolute temperature and state it formally.

Definition 2.2. Absolute Temperature: The absolute temperature of a system in ther-
modynamic equilibrium, denoted by T , is defined by the following expression.

The average total kinetic energy of a molecule per degree of freedom =
1
2

kBT. (2.1)

Observe that this quantity is not well defined unless the spatial averages and the time av-
erages of the kinetic energy of the center of mass are the same. That is, the above quantity is
well defined only if the system is in thermodynamic equilibrium. This definition of tempera-
ture allows us to conclude that two systems of particles in contact with each other will have
the same absolute temperature when they are in equilibrium. However they may not have the
same kinetic energy if the molecules have different number of degrees of freedom.

Note that the notion of thermodynamic equilibrium is what allowed us to precisely define
the macroscopic property called absolute temperature. However the notion of temperature was
well established way before the knowledge of the particle nature of matter. This notion was
developed by pure reasoning and was also based on a phenomenological definition of equilib-
rium. Below we visit this interpretation of thermodynamic equilibrium and discuss how it gave
rise to the notion of a temperature of a system. Reflecting its origin, this notion of temperature
is called empirical temperature and we will see later that it has a definte correspondence with
the absolute temperature that is defined using the microscopic picture.

In the empirical formulation we define the thermodynamic equilibrium state of closed sys-
tem to be the steady state that satisfies the following properties:

Axiom 2.1 - Zeroth Law of Thermodynamics: Consider three thermodynamic systems
A,B and C. If A and B are in thermal equilibrium and A and C are in thermal equilibrium
then necessarily B and C are in thermal equilibrium.

Notice that this assumption follows easily from the notion of thermodynamic equilibrium
defined using the particle nature of matter. The zeroth law allows one to assign an empirical
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temperature, θ o, to a thermodynamic state as follows. Define a system, called a thermometer
Θ , that allows the easy measurement of a variation of a single measurable macroscopic ther-
modynamic variable, such as volume, while its other macroscopic properties remain constant.
Thus this measurable quantity will serve to define its thermodynamic state (that is if x is the
thermodynamic state of Θ then there exists a function θ o(x) that uniquely prescribes the state
x). Two systems B and C will be defined to have the same empirical temperature if B is in
thermal equilibrium with Θ in a particular state, x, and C is in thermal equilibrium with Θ

in the same state, x. The zeroth law now allows us to say that both systems are at the same
temperature θ o(x). We will see later that all such defined θ o(x) will have a linear variation
with T .

2.3 Pressure

Recall that the rate of change of momentum of the molecules of the balloon that is caused
by the never ending collision of the air molecules on the balloon is what gives rise to the
pressure inside a balloon. Let us try to estimate this pressure. Specifically let us consider
a N number of gas molecules contained in a cube of volume V and estimate the pressure
exerted by the gas molecules on the inside surface of the cube. Consider a single gas molecule
colliding with one of the faces of the cube as shown in figure-2.2. Let A be the cross sectional

Fig. 2.2 The motion of a gas particle in a box. Figure courtesy of http://www.ck12.org

area of this face and denote by vx the velocity of the center of mass of the molecule in the x-
direction (the direction perpendicular to the surface of collision). Recall that when a collection
of particles is in thermodynamic equilibrium particle collisions are elastic and there are no
preferred directions for the motion of particles and that consequently in collisions the only
thing that changes is the direction of motion and not the magnitude of the velocity. Thus it can
be seen that when a molecule bounces off the surface its velocity in the x direction changes
sign but must remain the same in magnitude. Consider the collision of a particular molecule
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p that has a x velocity component equal to vx. The change of momentum of this molecule due
to its collision with the face is 2mpvx where mp is the mass of the molecule. Thus, the law of
conservation of momentum tells us that, 2mpvx of momentum is transferred to the face of the
cube due to the collision of the molecule p that has a x component of the velocity equal to vx.
If we know the number of such molecules that hit the surface per unit time then multiplying
2mpvx by this number gives us the total rate of change of momentum given to the surface of
the cube due to the collision of molecules that have a x-velocity equal to vx. In a unit time
interval only half of the molecules with a x-velocity equal to vx that lies 9 within a distance vx
from the face have the chance of hitting the face. Thus the total rate of change of momentum
occurring in the molecules on the face of the cube due to a collision with a molecule that has
a x component of the velocity equal to vx is

1
2

(
nvx

Avx

V

)
2mpvx =

A
V

nvxmpv2
x ,

where nvx is the number of molecules per unit volume with the magnitude of the x component
of the velocity equal to |vx|. Since the rate of change of momentum is equal to the force we
would see that the above expression gives the total force acting on one of the faces due to the
effect of the collision of the gas particles with the x component of the velocity equal to vx.
Thus the total force on the wall due to the collision of particles of all possible velocities is
given by

F = ∑
vx

A
V

nvxmpv2
x = ∑

vx

2AN
V

(
nvx

N
mpv2

x

2

)
= 2A

N
V

〈
mpv2

x

2

〉
,

where we have denoted the average of the quantity mpv2
x by〈

mpv2
x

2

〉
, ∑

vx

(
nvx

N
mpv2

x

2

)
.

Recall that since equilibrium implies there are no preferred directions we also have 〈v2
x〉 =

〈v2
y〉= 〈v2

z 〉, and 〈v2〉= 〈v2
x +v2

y +v2
z 〉= 〈v2

x〉+ 〈v2
y〉+ 〈v2

z 〉. Thus we see that 〈mpv2
x

2 〉=
1
3〈

mpv2

2 〉
and hence that:

The pressure, P, exerted by an ideal gas on its boundary is given by

P =
N
V

2
3

〈
mpv2

2

〉
,

where N is the number of gas molecules in the system, mp is the mass of a single
molecule, V is the volume occupied by the gas molecules, and v is the magnitude of
the center of mass velocity of a molecule.

9 Why half?
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2.4 The ideal gas law

From the above expression for pressure we see that

PV = N
2
3

〈
mpv2

2

〉
.

Recall that since the center of mass motion of a molecule has three degrees of freedom〈
mpv2

2

〉
= 31

2kBT . Substituting this in the above expression we have:

The ideal gas law:
PV = NkBT. (2.2)

Let us briefly try to summarize some of the amazing implications of this law.

(a) Equal volumes of gasses at the same temperature and pressure have the same number of
molecules irrespective of the type of gas10.

(b) The pressure in a closed ideal gas system undergoing a constant temperature change is
inversely proportional to the volume11.

(c) The volume of a closed ideal gas system at constant pressure is proportional to the absolute
temperature12.

Let us re-write the ideal gas law (2.2) in terms of the number of Moles, n, or the total
mass m of the gas instead of the number of molecules contained in the gas N. Recall that
NA = 6.0221× 1023 denotes the Avogadro’s number. By definition the number of moles,
n, is given by n = N/NA. Then the ideal gas law (2.2) becomes PV = nNAkBT . Defining
R = NAkB ≈ 8.3145JK−1, we have the following form of the ideal gas law used by chemists:

PV = nRT. (2.3)

The constant R is a universal constant and is referred to as the universal gas constant.
Note that this expression describing the equilibrium state of a closed system of ideal gas

particles was known well before the knowledge of the particle nature of matter. It was purely
derived from an effort to interpret various observed phenomena and experimental results that
were summarized by Avogadro, Boyle, and Charles.

Exercise 2.2. A sample of an ideal gas is contained in a certain vessel at a pressure of 1
atm. What is the pressure of this sample of gas when the volume is halved and the absolute
temperature is doubled?

Exercise 2.3. Two types of ideal gasses are contained in an insulated cylinder. There are NA
number of gas molecules of type A and NB number of gas molecules of type B. The temper-
ature of the inside of the cylinder surface is measured to be T kelvins while the volume of

10 Avogadro’s law
11 Boyle’s law
12 Charle’s law
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the cylinder is measured to be V m3. What is the total pressure acting on the piston? State all
assumptions made.

Exercise 2.4. Consider a closed system consisting of k types of different ideal gases. The total
volume of the system is V and it is found that the temperature of the inside boundary of the
system is T and the total pressure acting on the inside of the boundary is P. If there are Ni
number of molecules of type i show that the equilibrium thermodynamic properties of the
system satisfy PV = NkBT where N = ∑

k
i=1 Ni.

Exercise 2.5. Find the volume, in mL, when 7.00 g of O2 and 1.50 g of Cl2 are mixed in a
container with a pressure of 482 atm and at a temperature of 22oC.

In engineering it is usually convenient to express the ideal gas law in terms of the total
mass, m, of the gas. We see that the total mass of the gas of N molecules is m = Nmp, where
N is the number of gas molecules and mp is the mass of a molecule. Then PV = (m/mp)kBT .
Defining Rs = kB/mp we have

PV = mRsT. (2.4)

The constant Rs = kB/mp depends on the type of gas and is referred to as the specific gas
constant of the gas. Using exercise-2.4 one can find Rs for a mixture of gases. A fairly accurate
estimate for air is Rs = 0.287kJ/kgK.

Exercise 2.6. Stating all assumption, estimate Rs for air.

Exercise 2.7. 13 Consider the piston cylinder arrangement shown in figure-2.3. The piston
is frictionless with area A = 0.2 m2. The cylinder is initially filled with air with the piston
positioned at a height of 2 m, initial pressure P1 = 200 kPa and temperature T1 = 500o C. The
air inside the cylinder is slowly cooled. Find

(a) the temperature when the piston reaches the stops that are positioned at a height of 1 m,
(b) the pressure if the cooling continues to T = 20o C.

In a closed ideal gas system the total number of molecules, N, in the system is fixed. Thus
the ideal gas law also tells us that when a closed system is in thermodynamic equilibrium
the observable macroscopic properties that define the thermodynamic state (the condition) of
the system such as V,P,T are not entirely independent. The ideal gas law implies that the
knowledge of two properties are sufficient to uniquely describe the rest of the properties14.
For example the knowledge of P and V for a closed system of N particles uniquely determines
T . It turns out that this observation is in general true for any system that consists of a single
type of molecules.

It is interesting to know if there exists other macroscopic variables of interest such as V,T,P.
Below we define another set of such quantities.

13 Example-3.3 of the lecture notes by J. M. Powers.
14 This is popularly known as the two property rule.
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Fig. 2.3 The ideal gas exercise -2.7. Figure courtesy of http://www3.nd.edu/∼powers/ame.20231/notes.pdf

2.5 Internal Energy

Recall that absolute temperature measures the amount of average kinetic energy per degree of
freedom of a molecule and the pressure is the average rate of momentum transfer per unit area
due to molecular collisions with the boundary. For an ideal gas of N molecules we will now
define the total energy of all the molecules to be a new macroscopic thermodynamic property
called the internal energy U of the system. Assuming that the molecules behave according to
the classical Galelian laws of mechanics, it can be defined to be the total sum of the potential
plus kinetic energy of the molecules. A system of ideal gas molecules, by assumption, do not
interact with each other except when they collide with each other. Thus there is no potential
energy associated with the ideal gas molecules and we have that the internal energy is the total
kinetic energy of all the molecules. That is U = Nr 1

2kBT where r is the degrees of freedom of
a single molecule. For historical reasons we will denote r

2 = 1
(γ−1) and hence formally define

internal energy of an ideal gas as:

Definition 2.3. Internal Energy: Internal energy of an ideal gas is defined to be

U ,
NkBT
(γ−1)

.

The parameter γ is called the adiabatic constant of the gas.

Note that in the ideal condition γ = (r+2)
r . For instance for a mono-atomic gas like Ar or

He r = 3 and hence γ = 5/3 ≈ 1.66. It might be useful to keep in mind that for molecules
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made up of more than one atom the potential energy due to the forces between the atoms in
the molecule may not be negligible.

Using this newly defined thermodynamic property, internal energy U , we can re-write the
ideal gas equation for a N number of gas molecules as

PV = (γ−1)U. (2.5)

The ideal gas law and the above expression are the only expressions that one needs to estimate
the macroscopic properties of an equilibrium state of an ideal gas.

Considering the microscopic picture one sees that the definition of thermodynamic vari-
ables V,P and T for the ideal gases can naturally be extended to other materials that exist in
other conditions as well. However we need to be careful when we consider internal energy U
of a general system. For an ideal gas this is equal to the total kinetic energy of the gas particles
since ideal gas molecules do not interact with each other and hence there exists no potential
energy of interaction. However if the molecules interact like in a liquid or a solid the potential
energy of the interactions should also be counted when one calculates the internal energy. In
such an instance the potential energy U will not depend only on T . Even then one can still
show that U is uniquely determined by the knowledge of only two thermodynamic variables.
Thus the two property rule still holds for pure materials other than ideal gases.

2.6 Enthalpy

In Section-6 we will see that, when dealing with open systems the term U +PV will naturally
start appearing where the term PV is equal to the work done by the flow. Thus it turns out to
be convenient to define a new thermodynamic property to define this quantity.

Definition 2.4. Enthalpy: The enthalpy H of a closed system, is defined to be

H ,U +PV.

Computing H for an ideal gas we see that

H =U +PV = m
Rs

γ−1
T +mRsT = m

Rsγ

γ−1
T.

Note that this quantity, enthalpy, has no physical significance other than being simply U +PV .

2.7 Specific heat capacities of ideal gasses

Let us define the two parameters cv and cp as follows
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cv ,
Rs

γ−1
, (2.6)

cp ,
γRs

γ−1
(2.7)

then we can write the internal energy, U , and the enthalpy, H, as

U = mcvT,
H = mcpT.

These two parameters are called the specific heat capacities15 of the ideal gas. From the above
relationships it easily follows that, for an ideal gas the specific heat capacities must also satisfy,

cp

cv
= γ, (2.8)

cp− cv = Rs. (2.9)

Note that for an ideal gas the two specific heat capacities are a constant for a given particular
gas.

Observe that by measuring cp and cv of an ideal gas one can find the adiabatic constant γ .
Such experimental estimates of γ deviate significantly from the theoretical estimate of γ =
(r+2)

r . Note that the internal energy was defined based on the assumption that molecules of
an ideal gas behave according to the laws of classical Galelian laws of mechanics. Thus this
experimental disagreement was one of the earliest clues of the failure of the classical Galelian
laws of mechanics to accurately describe the motion of small particles. The interested reader
is referred to Chapter-40 of the excellent text, Feynman lectures on physics [5].

15 The meaning of this term will be clearer in Section-3.3.
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Chapter 3
Limits of energy conversion

Up to this point we have seen how one could go about characterizing the average collective
behavior of a large number of particles using a few number of quantities that we call thermo-
dynamic properties (or equivalently macroscopic properties) of a system. We have seen that
this can be done only if the system of particles are in a particular special condition called
thermodynamic equilibrium where the notion of average center of mass kinetic energy of all
the particles is well defined. We have seen that two thermodynamic properties uniquely define
the thermodynamic equilibrium state of a given closed ideal gas system. It turns out that this
is also true for sufficiently simple systems consisting of molecules of the same type that are in
the same condition1. Thus we see that the space of all possible equilibrium states of a given
simple closed system can be identified with a point in R2. Thus, once we pick a suitable pair
of thermodynamic variables2, we can identify an equilibrium state of the closed system with
a point in the plane.

A key property of a closed system is internal energy. It represents the total energy of the
collection of particles. The question that we will try to answer in this section is how much
of this energy can be converted into mechanical work. A machine that converts energy to
mechanical work is called an engine. From a practical point of view we would like to find out
what the best possible engine is. The search for the answer to this question was the driving
force behind the study of thermodynamics and the industrial revolution.

3.1 Thermal Processes

We will begin by considering what changes happens to a system when it is made to interact
with the surrounding. In general a transition of a closed system from one equilibrium state to
another is called a thermal process.

If all the intermediate states in such a transition are also equilibrium states we have a special
name for it:

1 What is known as the two property rule.
2 Coordinates.
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Fig. 3.1 Schematic representation of a Quasi-Static thermal process and a non-Quasi-Static thermal
process.

Definition 3.1. Quasi-Static Process: A closed system undergoing a transition in from
one thermodynamic equilibrium state to another in such a way that all the intermediate
states are also in thermodynamic equilibrium is called a Quasi-Static thermal process.

Real processes never satisfy this idealized condition. However we may imagine that if
changes are done sufficiently slowly3 the process may be close to such conditions. On the
other hand in a process that involves stirring or mixing we clearly see that there is a preferred
direction of motion for the particles. Thus stirring or mixing is not a quasi-static process. Re-
call that the equilibrium state of a sufficiently simple system can be represented as a point in
a plane. Thus, since all intermediate states of a quasi-static process are also equilibrium states
we can represent a quasi-static process as a curve in the plane as shown in figure-3.1. However
since the intermediate states of a non-quasi-static process are not in equilibrium we can not
represent such a process as a curve in the plane. We will adhere to the convention of using a
dotted curve to represent non-quasi-static processes as shown in figure-3.1.

A reasonable question to ask at this moment is if all processes are reversible?

Definition 3.2. Reversible Process: If a certain quasi-static process can be reversed
such that both the system and the surrounding are both restored back to their original
equilibrium states at every stage of the process, the process is said to be reversible. Notice
that by definition all reversible processes are necessarily quasi-static. However not all
quasi-static processes need to be reversible.

3 How slowly is slow here?
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In a thermal process the energy of the molecules of a system can increase, decrease or
remain the same due to the interaction of the system of particles with its surrounding. Two
distinct types of interactions occur between the molecules comprising the system and the
surrounding. In one case the molecules of the system will interact directly with the particles
of the surrounding4 through ‘collisions’. If these interactions are negligible we will say that the
system is thermally insulated or insulated to be brief. Another way the molecules of the system
can interact with the surrounding is through the boundary or a shaft that connects the inside of
the system to the outside surrounding. For example if the volume of the system changes due
to a deformation of the system boundary the system molecules and the surrounding particles
will both be affected. Such deformations of the system boundary involve the movement of
forces through certain distances and thus result in mechanical work. The work interaction that
occurs between a closed system and the surrounding due to the deformation of the boundary
will be called volume work. Recall that mechanical work is defined as follows.

Fig. 3.2 The work done by a constant force. Figure courtesy of http://www.sdsu-physics.org

Definition 3.3. Mechanical Work: The net effect caused by a force moved by a distance
in the direction of the force is defined to be the work done by the force. Specifically if a
force F acting on a mass is moved along a path c, then the work done by the force along
path c is defined to be the line integral

∆W ,
∫

c
F ·dr.

Note that, in general, mechanical work is path dependent.

4 Note that at a microscopic level electromagnetic radiation occurs through photon transport.
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There exists other types of indirect interactions that may arise and result in mechanical
work. For instance, by stirring a system of gas particles using a shaft we can do work on a
system and by allowing a set of gas particles to expand through a nozzle that has a kind of a
fan at the end5 the system will do work on the surrounding. Note that this kind of work will
be referred to as shaft work and that in such a process the intermediate states of the system
are not in thermodynamic equilibrium since the process involves a flow of molecules.

We can associate a real number referred to as the work done or simply work during a thermal
process for those interactions a system has with the surrounding that involve mechanical work.

Definition 3.4. Work Done: The work done by a closed system during a thermal process
corresponds to the maximum possible mechanical work that can be extracted during the
process. Conventionally the work done by the system during a process will be taken to
be positive while the work done on the system will be taken to be negative.

Note that the sign convention for the work used in this note is different from the convention
used by Prof. Sivasegaram where he uses the convention that work done on the system to be
positive. Since mechanical work is path dependent the work done during a thermal process is
generally path dependent and is not necessarily a function of only the two end states.

Let us try to estimate the volume work that arises in a given process due to the deformation
of the system boundary. The incremental6 work done due to an infinitesimal (very small)
change in the boundary caused by the deformation of a point R on the boundary with position
r to a point R+δR with position r + δ r is given by δW = PδAn · δ r. Here δA is the small
area of the boundary at R, P is the pressure acting at the point R, and n is the unit normal
to the boundary at R. Since δAn · δ r = δV we see that the incremental work due to the
infinitesimal change δ r in the boundary is given by δW = PδV . Since pressure can only be
defined for a system in equilibrium we can use this formula to calculate boundary work only
if all intermediate states of a process are also equilibrium states and hence the process is
quasi-static.

For a quasi-static process from an equilibrium state 1 to an equilibrium state 2 the volume
work done by the system can thus be defined to be the integral

∆W ,
∫ 2

1
PdV. (3.1)

Observe that this expression says that a system will do volume work on the surrounding
only if its volume changes. This also says that the volume work done by the system in a quasi-
static process is equal to the area under the P−V curve of the quasi-static process as shown in

5 What we call a turbine.
6 Alternatively referred to as differential changes.
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figure-3.3. Note that in order to analytically find the volume using the above expression one
needs to know how P varies as a function of V .

Fig. 3.3 The volume work done by the system in a quasi-static process is the area under the P−V
curve of the process.

Exercise 3.1. Find the volume work done by a closed ideal gas system in the following pro-
cesses:

(a) quasi-static isochoric7 process.
(b) isobaric8 process.
(c) isothermal9 process.

A system where its particles do not interact with the particles of the surrounding are partic-
ularly simple in nature. Recall that we call such systems thermally insulated systems. We saw
that in a thermally insulated system the possible interactions occur only as a consequence of
the deformation of the boundary or as a consequence of the interaction with a shaft. A process
that a thermally insulated systems undergoes will be called an adiabatic process. That is:

Definition 3.5. Adiabatic Process: A process is said to be adiabatic if throughout the
process the only interaction the system has with the surrounding is mechanical work.

7 Constant volume
8 Constant pressure
9 Constant temperature
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3.2 Conservation of Energy and the First Law of Thermodynamics

Let us consider a thermally insulated glass container filled with an ideal gas and a stirrer. If
we stir the gas for a while we will notice that the temperature of the gas will go up. Which
implies that the internal energy of the gas has increased due to the effect of the shaft work
done on the system. This is reasonable since stirring the gas would cause the gas molecules to
move faster due to the constant rate of momentum transfer that is resulting from the collision
between the gas molecules and the rotating stirrer. Thus we can conclude that doing work on
a thermally insulated (isolated) system increases its internal energy. But by how much does
it increase? One of the fundamental laws of classical mechanics is the belief that the total
energy of all the particles of the Universe is conserved10. Recall that the internal energy of a
system was defined to be the total energy of all the particles in a system. Thus it is reasonable
to assume that in an adiabatic process the increase in the internal energy of an isolated system
must be equal to the work done on the system. Experience and extensive experimentation
indicates that this assertion is indeed true and we take it as a fundamental behavior of nature.
This statement is one of the most fundamental forms of the First Law of Thermodynamics and
we state it formally.

10 The principle of conservation of energy.
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Axiom 3.1 - First Law of Thermodynamics: The internal energy increase, denoted by
∆U, in an adiabatic process is equal to the work done on the system during the adiabatic
process. That is, for an adiabatic process,

∆U =−∆W,

where ∆W is the work done by the system during the process. Here we use the convention
that work done by the system is positive.

We know that mechanical work is path dependent. Thus will the work done in an adiabatic
transition of an isolated system between two specific equilibrium states be the same for any
adiabatic process? Or in other words is adiabatic work path independent? It better be so.
Otherwise the internal energy of a system will not be a property of the equilibrium state of a
system11. Thus the particle nature of the universe and the law of conservation of energy of the
universe imply that adiabatic work is path independent.

Historically the thermodynamic behavior of systems was well understood way before the
realization that everything is made up of particles. This was made possible by conversely
assuming that all adiabatic transitions of a system between two equilibrium states result in
the same work. Before the turn of the 20th century, this assumption was taken to be the most
fundamental form of the first law of thermodynamics. Notice from the preceding discussion
that it also establishes the fact that one can assign a property of the equilibrium thermodynamic
state of a system called internal energy such that the increase in the internal energy in an
adiabatic process is equal to the work done on the system.

For non-isolated systems the surrounding particles interact with the system particles and
hence can cause the internal energy of the system particles to change. Thus for non-isolated
systems undergoing a general process the internal energy increase will not be equal to the
work done on the system during the process. That is, for a general non adiabatic process ∆U +
∆W 6= 0. This difference will be defined as the heat interaction12 of the process. Formally we
have the following definition.

Definition 3.6. Heat Interaction: For a closed system undergoing a transition from an
thermodynamic equilibrium state x to a state y, the heat interaction, ∆Q, between the
system and the environment during the process is defined to be

∆Q , ∆U +∆W,

where ∆U =U(y)−U(x) and ∆W is the work done by the system during the process.

11 Show that the the law of conservation of energy implies that adiabatic work is path independent.
12 Traditionally referred to as the heat transfer.
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Note that this is nothing but a statement that says heat is the amount of thermal energy that
is transferred to the system due to non mechanical (that does not involve work) interactions
the particles of the system have with the surrounding. Through experience we have found
that the manner in which the particles of the surrounding can interact with the particles in
the system are very limited. If the interaction is through collision of surrounding molecules
with the system molecules we call it conduction energy transfer. The other type of common
interaction that occurs is when electromagnetic waves, or photons, in the surrounding interact
with the electrons of the molecules of the system. This second type of interaction is called
radiation energy transfer. Thus it is clear that heat is not something that can flow in an out of
a system. Before the knowledge of the particle nature of matter people in fact believed that
there was some invisible fluid called heat that flowed between ‘hot’ bodies and ’cold’ bodies.
Hence the traditional use of the terms such as heat flow, heat addition or heat removal. In this
note we will try as much as possible to avoid such terms. Instead, if in a process the energy
of the system increases due to the direct interaction of the molecules with the surrounding
we will say a a positive heat interaction has occurred instead of the words heating or heat
addition and if the energy of the system decreases due to the direct interaction of the molecules
with surrounding we will say a a negative heat interaction has occurred instead of the words
cooling or heat removal. In the following discussions we will adopt the following notations.

Consider a process where the system undergoes a change from an equilibrium state i
to an equilibrium state j. We will let ∆Wi j denote the total work done by the system,
∆Qi j denote the total heat interaction between the system and the surrounding, and ∆Ui j
denote the total change in the internal energy of the system during the process.

Exercise 3.2. Find the heat interaction that occurs in a closed ideal gas system in the following
processes:

(a) quasi-static isochoric13 process.
(b) isobaric14 process.
(c) isothermal15 process.

Exercise 3.3. Consider a closed ideal gas system. Find the heat interaction between the system
and surrounding for the following processes of the system:

(a) isochoric process with stirring where the initial temperature and the temperature after stir-
ring is the same.

(b) isobaric and isothermal process.

Exercise 3.4. Consider a closed and insulated ideal gas system contained in a rigid cylinder.
If the system is mixed using a shaft and the mechanical work involved in the mixing was
estimated to be Ws Joules find the temperature change in the system due to mixing.

13 Constant volume
14 Constant pressure
15 Constant temperature
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3.2.1 Quasi-static adiabatic ideal gas process

Let us apply the knowledge that we have developed so far to estimate the work done by a
closed system of ideal gas particles undergoing a quasi-static adiabatic process. For a system
of N particles at equilibrium defined by the thermodynamic properties (P,V,T ) that undergoes
an infinitesimal change and ends up at the equilibrium state (P+ δP,V + δV,T + δT ) the
incremental changes must satisfy

PδV +V δP = NkBδT = (γ−1)δU.

For an adiabatic process, since the only interaction the system has with the surrounding is
work, the principle of conservation of energy, or what is known as the first law of thermody-
namics, tells us that the incremental increase in the internal energy δU of the particles must
be equal to the incremental work done on the system. That is

δU =−δW =−PδV.

Substituting this in the above incremental expression we have

PδV +V δP =−(γ−1)PδV,

and by re-arranging the terms we have

γ
1
V

δV +
1
P

δP = 0.

Now for a quasi-static process from an equilibrium state-1 to an equilibrium state-2 we can
integrate the above expressions and obtain,

0 = γ

∫ 2

1

1
V

δV +
∫ 2

1

1
P

δP = γ ln
(

V2

V1

)
+ ln

(
P2

P1

)
= ln

(
V2

V1

)γ

+ ln
(

P2

P1

)
= ln

((
V2

V1

)γ P2

P1

)
= ln

(
P2V γ

2

P1V γ

1

)
,

and hence that
P2V γ

2

P1V γ

1
= 1.

Which says that PV γ is equal to a constant along a quasi-static adiabatic ideal gas process.
Thus the volume work done by an ideal gas system in a quasi-static adiabatic process is

∆W volume
12 =

∫ 2

1
PdV =

∫ 2

1

c
V γ

dV =
c

(1− γ)V (1−γ)

∣∣∣∣2
1
=− 1

(γ−1)

(
P2V γ

2

V (γ−1)
2

−
P1V γ

1

V (γ−1)
1

)

=− 1
(γ−1)

(P2V2−P1V1) =−
NkB

(γ−1)
(T2−T1) .

However we have seen that adiabatic work is path independent. Thus it follows that one can
use the above formula to estimate the work done by an ideal gas system under going even a
non-quasi-static process. We summarize the above result in the following:
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For an ideal gas quasi-static adiabatic process

PV γ = c (constant),

and the work done by an ideal gas system in any (quasi-static or not) adiabatic process is

∆W12
volume =− 1

(γ−1)
(P2V2−P1V1) =−

NkB

(γ−1)
(T2−T1) . (3.2)

Fig. 3.4 An insulated piston cylinder arrangement. The piston cylinder interface is smooth and the
piston is free to move.

Exercise 3.5. Consider the rigid piston cylinder arrangement shown in figure-3.4. Assume that
the cylinder and the piston are covered by a perfectly insulating material and that the piston
cylinder interface is very smooth and the piston is free to move. Two types of ideal gasses are
separated in the cylinder by the piston. The number of gas molecules of type A are equal to N
and the number of gas molecules of type B are twice as that of A. At thermal equilibrium one
finds that the volume occupied by each of the gases is the same and equal to V , the temperature
of the gas A is T and the pressure of the gas A is P. After a certain time a door in the piston is
opened and the gases are allowed to mix.

(a) Find the initial temperature and pressure of gas B, in terms of the variables N, V and T .
(b) Find the pressure, after mixing is complete, in terms of the variables N, V and T .
(c) Show that the temperature, T2, and pressure, P2, after mixing must satisfy

1
2

T <T2 < T,

3
4

P <P2 <
3
2

P.

Exercise 3.6. Consider the rigid piston cylinder arrangement shown in figure-3.5. Assume
that the cylinder and the piston are covered by a perfectly insulating material and that the
piston cylinder interface is very smooth and the piston is free to move. Two types of ideal
gasses are separated in the cylinder by the piston. The number of gas molecules of type A
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Fig. 3.5 The piston cylinder arrangement for exercise-3.6

are equal to N and the number of gas molecules of type B are twice as that of A. At thermal
equilibrium one finds that the volume occupied by each of the gases is the same and equal to
V , the temperature of the gas A is T and the pressure of the gas A is P. A high current is sent
through the coil that is inside the left hand side of the cylinder for a certain amount of time.
The current is switched off and after a while the system attains an equilibrium state where the
pressure of the gas B is P2 and the temperature of the gas B is T2. The electric energy used by
the coil while it was switched on was estimated to be E Joules. Find the variables that define
the end equilibrium state and estimate the work done by the gas B.

Fig. 3.6 The piston cylinder arrangement for exercise-3.7

Exercise 3.7. Consider the uniform cross section rigid insulated cylinder shown in figure-3.6.
Two types of ideal gasses are separated in the cylinder by a piston of negligible volume and
cross sectional area ap. The piston cylinder interface can be assumed to be very smooth. There
are N number of gas molecules of type A. At thermal equilibrium we find that the volume
occupied by both gasses is the same and that the absolute temperature of the gas A is T and
the force F exerted on the piston is zero. If we slowly move the piston so that the volume
of gas A is twice that of gas B and the temperature of gas A has increased to T2, answer the
following:

(a) What is the force that we have to apply to the piston to keep it in place?
(b) Estimate the work done on the system.

Exercise 3.8. Consider the uniform cross section rigid cylinder shown in figure-3.7. The pis-
ton is uninsulated and the cylinder is insulated from three sides. Two types of ideal gasses
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Fig. 3.7 The piston cylinder arrangement for exercise-3.8

are separated in the cylinder by a piston of negligible volume and cross sectional area ap.
The piston cylinder interface can be assumed to be very smooth. There are N number of gas
molecules of type A. At thermal equilibrium we find that the volume occupied by both gasses
is the same and that the absolute temperature of the gas A is T and that the force F acting on
the piston is zero. If we slowly move the piston so that the volume of gas A is twice that of
gas B. Answer the following:

(a) What is the force that we have to apply to the piston to keep it in place?
(b) Estimate the work done on the system.
(c) What can you say about the heat interaction between the gases and the surrounding?

Compare this answer with that of exercise-3.7.

Fig. 3.8 An insulated piston cylinder arrangement. The piston cylinder interface is smooth.

Exercise 3.9. Consider the rigid insulated cylinder shown in figure-3.8. Two types of ideal
gasses are separated in the cylinder by an insulated piston of negligible volume and/or neg-
ligible heat capacity. There are NA number of gas molecules of type A and NB number of
gas molecules of type B. Initially the piston is kept in place by applying a force. The initial
equilibrium state of the two gases is then given by the thermodynamic variables TA1,PA1 and
TB1,PB1 respectively. We consider three cases:

3.9.a The insulation of the piston and the force acting on the piston are suddenly removed.
3.9.b The insulation of the piston is kept in tact and the force acting on the piston is removed

suddenly.
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3.9.c A door in the piston is slowly opened so that the intermediate states are guaranteed to
be equilibrium states while the piston is kept in place.

In each of the three cases find the final equilibrium state of the system in terms of the thermo-
dynamic properties of the initial state. Estimate the internal energy change occurring in each
gas and comment about the work done by each gas for all the three cases above.

Fig. 3.9 A heating and cooling process. Figure courtesy of Feynman Lectures on Physics.

Exercise 3.10. Consider a piston cylinder arrangement where the cylinder is insulated from
the sides and the piston is insulated at the top while the bottom of the cylinder is uninsulated.
An ideal gas is trapped inside the cylinder. Initially the gas is at an absolute temperature TH ,
pressure P1 and volume V1 when it is placed on a hotplate at temperature TH . Consider the
following sequence of process:

Step 1: While the cylinder is on the hot plate the piston is moved by applying an external
force on the piston in such a way that the temperature of the gas remains constant at TH
until the volume inside the cylinder reaches V2.

Step 2: When the volume inside the cylinder reaches V2 the cylinder is immediately moved
on to a mound of sand and the piston is allowed to move freely until the temperature inside
the cylinder reaches TC. Let the volume at this point be V3.

Step 3: As soon as the temperature reaches TC the piston is moved onto a cold plate that is
also at a temperature of TC and the piston is moved by applying an external force in such a
way that the temperature of the gas remains constant at TC. This process is continued until
the volume inside the cylinder reaches V4.

Step 4: The moment the volume inside the cylinder reaches V4 the cylinder is moved on to
the mound of sand and the piston is moved until the volume reaches V1.

The volume V4 is chosen such that when the volume inside the cylinder reaches V1 the pressure
of the gas is also P1. This process is shown in figure-3.9. Answer the following with respect
to this process.

(a) Illustrate the process using a curve in P−V space.
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(b) Find the heat and work interaction occurring in each stage of the process.

Fig. 3.10 The cycle on which the spark ignition gasoline engines are based on. This is an idealization
of the cycle called the Otto air standard cycle.

Exercise 3.11. A closed system consisting of air undergoes a cyclic process as shown in
figure-3.10. The processes 3→ 4 and 1→ 2 are quasi-static adiabatic processes. The pres-
sure and the volume when the system is in state 1 is P1,V1 respectively while the pressure and
the volume of the system when it is in state 3 is P3,V3 respectively. The mass of the air parti-
cles that makeup the system is m, specific gas constant of air is Ra, and the adiabatic constant
of air is γ . Find the heat and work interactions occurring in one complete cycle of the system
in terms of the above data. Also show that the efficiency of the engine that is modelled by the
cyclic system is given by

η =

(
1−
(

V3

V1

)(γ−1)
)
×100%

Exercise 3.12. A closed system consisting of air undergoes a cyclic process as shown in
figure-3.11. The processes 3→ 4 and 1→ 2 are quasi-static adiabatic processes. The pres-
sure and the volume when the system is in state 1 is P1,V1 respectively while the pressure and
the volume of the system when it is in state 3 is P3,V3 respectively. The mass of the air parti-
cles that makeup the system is m, specific gas constant of air is Ra, and the adiabatic constant
of air is γ . Find the heat and work interactions occurring in one complete cycle of the system
in terms of the above data. Also show that the efficiency of the system is given by

η =

(
1− 1

rγ−1

(
αγ −1

γ(α−1)

))
×100%.

where α =V3/V2 and r =V1/V2.
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Fig. 3.11 This is an idealization of the cycle on which the diesel engines are based on.

Exercise 3.13. An closed system of N number of ideal gas molecules are contained in an
insulated rigid container with a stirrer. It is initially in a state (P1,V1). Upon stirring the system
for a while and allowing it to settle one finds that the pressure in the system has increased to
P2. Justifying your answer clearly estimate the total work done on the system during stirring.

Exercise 3.14. An ideal gas undergoes a two-step process. Beginning at state-1, it is isother-
mally compressed to state-2. Then it is iso-barically compressed to state-3. The system ex-
periences no shaft work. Stating all assumptions being made, find the total work done by the
system during the process. What can you say about the total heat interaction that has occurred
in the process. Has the system absorbed energy or lost energy during the process.

Exercise 3.15. 16 Consider the spring loaded piston cylinder arrangement shown in Figure-
3.12. Initially the air inside the piston is at P1 = 100 kPa , V1 = 0.002 m3 and the spring is un-
stretched (ie. x1 = 0 m) and we find the system to be in an equilibrium state. The atmospheric
pressure is Patm = 100 kPa, and the cross sectional area of the piston is A = 0.018 m2. Energy
is supplied to the air from outside so that the air expands until V2 = 0.003 m3. We know the
spring is linear with a spring constant k = 16.2 kN/m. Find the final pressure of the air inside
the cylinder and the work done by the air on the piston.

Exercise 3.16. 17 A spherical balloon contains air at P1 = 150 kPa and is placed in a vacuum.
It has an initial diameter of d1 = 0.3m. The balloon is ‘heated’ until its diameter is d2 = 0.4m.
It is known that the pressure in the balloon is proportional to its diameter. Calculate the work
of expansion.

16 Example 4.12 of the lecture notes by J. M. Powers.
17 Example 4.14 of the lecture notes by J. M. Powers.
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Fig. 3.12 A spring loaded piston cylinder arrangement. Figure courtesy of the e-book by J. M. Powers.

3.3 Processes of non-ideal gas systems

For non-ideal gas systems the particle interactions are not negligible and hence the potential
energy between particles also contribute to the internal energy. Thus the internal energy, U , is
not only a function of absolute temperature. The two property rule tells us that for sufficiently
simple systems the internal energy of a the system in an equilibrium state is only a function of
two independent variables. It is customary to pick T and V as the two independent variables.
That is let U(T,V ). On the other hand since the Enthalpy, H, is defined to be H = U +PV
it is customary to consider H to be a function of T and P. We know that these properties
depend on the number of molecules in the system and hence on the total mass of the system.
Thus it turns out to be convenient to consider the per unit mass quantities of these. That is
u(T,V ) , U(T,V )/m and h(T,P) , H(T,P)/m that we will call the specific internal energy
and the specific enthalpy of the system.

Then the incremental change in the specific internal energy due to an incremental change
in the equilibrium state of the system is given by

δu =
∂u
∂T

δT +
∂u
∂V

δV,

and thus for constant volume processes

δu =

(
∂u
∂T

∣∣∣∣
V=const

)
δT.

Similarly we also have

δh =
∂h
∂T

δT +
∂h
∂P

δP,

and thus for constant pressure processes

δh =

(
∂h
∂T

∣∣∣∣
P=const

)
δT.

Therefore it is customary to define the following as the specific heat capacities of non-ideal
gas system.

cv(T,V ),
∂u
∂T

∣∣∣∣
V=const
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cp(T,P),
∂h
∂T

∣∣∣∣
P=const

Using these quantities we can write for an iso-choric process

dU = mcv(T,V )dT,

and for an iso-baric process

dH = mcp(T,P)dT.

In section-2.7 we have seen that for an ideal gas the specific heat capacities do not depend
on the equilibrium properties of the system and are only a property of the type of gas. This
is not the case for a general non-ideal gas process. Therefore for general processes one may
consider these specific heat capacities also as properties of the equilibrium state.

Since the incremental volume change is zero for an iso-choric process without shaft work,
we have from the definition of heat interaction that

δQ = dU +PdV = mcv(T,V )dT,

and for an iso-baric process,

δQ = dU +PdV = dU +d(PV ) = d(U +PV ) = dH = mcp(T,P)dT.

Thus the knowledge of how the the specific heat capacities depend on the properties of the
equilibrium state allows one to estimate the heat interaction in constant volume and constant
pressure quasi-static processes by integrating the above expressions. Let us summarize these
results below:

For a general quasi-static iso-choric process V is a constant and

∆U12 = m
∫ 2

1
cv(T,V )dT, (3.3)

∆Q12 = m
∫ 2

1
cv(T,V )dT. (3.4)

For a general quasi-static iso-baric process P is a constant and

∆H12 = m
∫ 2

1
cp(T,P)dT, (3.5)

∆Q12 = m
∫ 2

1
cp(T,P)dT. (3.6)

For most solids and liquids at moderate pressures it turns out that cv and cp depend only on
temperature and if one knows this dependence one can analytically or numerically evaluate
the above integrals to obtain the heat interactions in iso-choric and iso-baric processes.
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Exercise 3.17. A certain non ideal gas undergoes an iso-baric process from an equilibrium
state (P1,V1,T1) to an equilibrium state (V2,T2). The specific heat capacity of the gas at con-
stant pressure, cp, is found to approximately satisfy the relationship cp(T ) = a0 + a1T +
a2T 2 +a3T 3. Find the heat interaction occurring in the process.

Unlike ideal gas systems non-ideal gas systems do not, in general, have simple relation-
ships between the various thermodynamic variables that describe the thermodynamic equi-
librium state. Thus in order to determine the volume work one needs to evaluate the integral
∆W volume

12 =
∫ 2

1 PdV using quadratures.

In certain quasi-static processes it may turn out to be possible to approximate the be-
havior of the process by the relationship PV n = constant. Such quasi-static processes are
called Polytropic Processes. Then we see that the volume work done by the system in a
polytropic process is given by

∆W12
volume =− 1

(n−1)
(P2V2−P1V1) , (3.7)

for n 6= 1.

Exercise 3.18. A closed system initially at an equilibrium state (P1,V1) undergoes a polytropic
expansion process that satisfies PV n and ends up in a state (P2,V2). The specific heat capacities
of the substance that makes up the system vary only with temperature for the pressures under
consideration. These relationships are known. That is cv(T ) and cp(T ) are known as a function
of the temperature (this function could either be given as an explicit formula or in a table as in
the case of most substances). The temperature, T , of the substance is also known as a function
of the pressure and volume of the system. That is, we know T = τ(P,V ) either explicitly,
graphically or in a tabular form. Show that the heat interaction during the process is given by
the expression

δQ12 = δU12 +δW12

=−P2(V2−V1)+
∫ T0

T1

cv(T )dT +
∫ T2

T0

cp(T )dT − P1V1

(n−1)

((
V1

V2

)(n−1)

−1

)
,

where P2 = P1

(
V1
V2

)n
, T1 = τ(P1,V1), T0 = τ(P2,V1), and T2 = τ(P2,V2).
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3.4 Heat Engines and the Second Law of Thermodynamics

So far we have seen that a closed system can, through its heat and work interactions with
the surrounding, convert the energy absorbed from the surrounding into work and convert
work back into energy. Machines that convert energy from the surrounding into work are
called heat engines. It is not too difficult to see that such an engine that uses a closed system
should preferably operate in a cyclic manner. That is, the process must visit all its intermediate
states18 periodically. Using the notion of a cyclic process we will formally define a heat engine
to be:

Definition 3.7. Heat Engine: A Heat Engine is a closed thermodynamic system that
undergoes a cyclic process.

Since internal energy is only a property of the equilibrium state we see that in one complete
cycle the total internal energy change that occurs in the system must be equal to zero. Thus the
first law of thermodynamics says that the total work done by the system, in one cycle, must be
equal to the total heat interaction the system has with the surrounding. Therefore the first law
says that you can not get work out of nothing or that more than 100% efficient engines do not
exist. We have encountered our first limitation of nature in terms of converting energy to work
and we see that it is a pure consequence of the first law of thermodynamics. From a practical
point of view the next question that we would like to ask is if it is possible to construct 100%
efficient engines. The second law of thermodynamics, that we will find below, states that even
this is impossible.

Just like the first law the second law can not be derived. It is simply a summary statement
of how nature behaves. All hitherto made observations and experiments have confirmed this
assertion and no experiments or observations have contradicted it. Therefor we take it as a
fundamental law of nature. Below, following Kelvin and Planck, we will state this law in the
most general form possible.

Axiom 3.2 - Kelvin-Planck Statement of the Second Law of Thermodynamics:
There exists no cyclic process that can convert a given amount of energy entirely into
mechanical work by only means of positive heat interactions. In other words it is impos-
sible to construct a cyclic process with a net effect equal to the one that is schematically
depicted in figure 3.13.

Note that the Kelvin and Planck version of the second law does not preclude the possibility
of converting work entirely into energy. In fact the burning sensation you feel when you rub
your finger over a table or the temperature rise inside an insulated cylinder due to constant
stirring indicates that work can be converted entirely into energy.
18 Note that all the intermediate states need not be equilibrium states.
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Fig. 3.13 A cyclic processes that only absorbs energy due to positive heat interactions with the sur-
roundings. The first law says that the work done by the system in the process must be equal to the total
energy absorbed by the system due to heat interactions. The Second Law of Thermodynamics states
that such a cyclic processes do not exist.

If a cyclic process depicted in figure-3.13 is impossible then what is possible is that some
energy from the system must also be lost to the the surrounding due to heat interactions. This
is shown schematically in the figure-3.14. Using the first law it can be easily shown that the

Fig. 3.14 The second law of thermodynamics says that a cyclic process that absorb energy from the
surrounding due to heat interactions and converts it into mechanical work will necessarily loose some
of the absorbed energy back to the surrounding due to heat interactions with the surrounding.

efficiency of such a heat engine is

η ,
W
QH
×100 =

(
1− QC

QH

)
×100 %.

The second law implies that efficiency of a heat engine is always less than 100%. If that is the
case then what cyclic process will give us the best possible efficiency? The French Engineer
Sadi Carnot provided an ingenious answer to this question. He showed that for a given energy
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source and an energy sink19 the maximum possible efficiency will result if and only if the heat
engine is a reversible cyclic process. You are invited to prove these statements in the exercises
given below.

Exercise 3.19. Show that all reversible engines operating between a particular choice of en-
ergy source and an energy sink will have the same efficiency.

Exercise 3.20. Consider an irreversible engine and a reversible engine operating between the
same energy source and energy sink. Show that the irreversible engine will have a lesser
efficiency than the reversible one.

In the next exercise you are invited to show that energy will not flow from a ‘cold’ place to a
‘hot’ place without the aid of mechanical work. This assertion is also commonly referred to
as a version of the second law of thermodynamics.

Exercise 3.21. Show that, in agreement with our observations, an energy transfer process that
occurs from a hot source to a cold sink without the aid of mechanical work is irreversible20.

In essence what these results imply is that reversible cyclic processes give the maximum
possible efficiency irrespective of the type of process and thus the efficiency must only depend
on the properties of the reservoirs. Therefore we see that the quantity QC/QH must be the same
for all reversible cyclic processes that operate between the same source and sink and that it
should only depend on the properties of the two reservoirs. Reservoirs are by definition very
large thermodynamic systems in a given unchanging equilibrium state and thus the property
that defines the state of a reservoir is its absolute temperature. Consequently the second law
of thermodynamics implies that for any reversible cyclic process we must necessarily have

QC

QH
= f (TC,TH).

What we would like to find out is what this function f (TC,TH) is. To answer this question
we will assume that we deal with a particularly simple class of systems called simple ther-
modynamic systems. All macroscopic systems of practical interest satisfy this property. Such
systems are characterized by the assumptions that: i.) if x and y are any two equilibrium states
of the system then either y can be reached from x in an adiabatic process or x can be reached
from y in an adiabatic process or both are possible, and ii.) given any equilibrium state x there
exits a pure heat interaction process21 that passes through x [3, 4].

19 Without loss of generality the sources and sinks are assumed to be reservoirs. A reservoir is a very
large thermodynamic system that is in thermal equilibrium where its interaction with other systems
occur only through heat interactions and the loss or gain of thermal energy through these interactions
will not result in a noticeable change in its equilibrium thermodynamic state. Since by assumption the
equilibrium state of a reservoir does not change, its temperature completely characterizes its state.
20 Hint: Show that if this statement is not true then that the Kelvin-Planck version of the second law
must be false.
21 Fo example it is reasonable to assume that we can always have a constant volume ‘heating’ and
‘cooling’ process starting from any equilibrium state.
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Exercise 3.22. Consider an arbitrary equilibrium state x of an arbitrary simple thermodynamic
system. The above assumption implies that there exists a pure heat interaction process22 that
passes through x. Let y and z be two equilibrium states that lie on this pure heat interaction
process as shown in figure-3.15. Show that:

(a) y can not be reached from x adiabatically.
(b) x can not be reached from z adiabatically.

Fig. 3.15 Adiabatically non-reachable states.

Using the results of exercise-3.22 it is easy to show that the second law as stated by Kelvin
and Planck implies that:

Axiom 3.3 - Caratheodory Statement of the Second Law of Thermodynamics: In
every neighborhood of every equilibrium state x of a simple thermodynamic system there
exists an equilibrium state y that is not adiabatically accessible from x and conversely
there also exists an equilibrium state z in every neighbourhood of x such that x is not
adiabatically accessible from z.

This statement is a weaker version of the second law and is attributed to Caratheodory.
In the first of the two exercises below we invite you to prove that the Kelvin-Planck version
implies the Caratheodory version of the second law.

Exercise 3.23. Prove that the Kelvin and Planck version of the second law implies the
Caratheodory’s version23.

22 A process where there is no work interaction.
23 Hint: Use the results of exercise-3.22
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3.5 What does Entropy tell us?

The Caratheodory statement of the second law says that there exists states near any given
state x that can not be adiabatically reached from x. What can we say about the states that can
be adiabatically and reversibly reached from x? It is possible to show that the states that can
be adiabatically and reversibly reached from x have a smooth structure24. One can also show
that there exists a reversible pure heat interaction process that is transversal to all such curves
of adiabatically and reversibly accessible states25. The existence of a transversal pure heat
interaction process implies that these smooth curves of adiabatically and reversibly accessible
states do not intersect each other26. Thus these smooth curves provide us with a new ruled
structure27 for the space of equilibrium states. This allows us to define a new thermodynamic
property by insisting it to be constant along these smooth curves of reversibly and adiabatically
accessible states. This new property of the equilibrium state is called entropy28 and will be
denoted by the symbol S. By computing the heat interaction that occurs along the transversal
pure heat interaction process one can quantify this property. We summarize these observations
below by defining entropy formally.

Entropy denoted by S satisfies:

(i) The entropy of two states x and y is the same, that is S(x) = S(y), if and only if y can
be reached from x by a reversible adiabatic processes.

(ii) There exists a reversible pure heat interaction process that is transversal to all the
constant entropy surfaces.

(iii) There exists a unique non-negative quantity, T , referred to as the absolute temperature
such that for a reversible processes, cr, from an equilibrium state x to an equilibrium
state y the total entropy change is given by

S(y)−S(x) =
∫

cr

δQ
T

. (3.8)

It can be shown that this absolute temperature coincides with the notion developed
before. Figure-3.16 provides a pictorial summary of these statements.

24 A smooth curve in the space of equilibrium states.
25 The proof of these two sentences is beyond the scope of these lecture notes and requires advanced
mathematical notions in differential geometry [3]. However you should convince yourself that this
must at least be true for an ideal gas system.
26 Prove this statement.
27 A new coordinate system.
28 The word entropy was coined by Rudolf Clausius in 1850.
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Fig. 3.16 Implications of the Caratheodory Version of the Second Law of Thermodynamics.

Exercise 3.24. By constructing suitable reversible processes find the entropy difference be-
tween the two states of a closed system of N number of ideal gas particles for each of the
cases given below:

(a) (T,Vi) and (T,Vf ).
(b) (P,Vi) and (P,Vf ).
(c) (V,Pi) and (V,Pf ).

In the following exercise you are asked to prove29 several key properties of Entropy. In
the process you will show that for adiabatic processes entropy increase is an indication of
irreversibility. We have seen above that by definition an adiabatic process is reversible if and
only if the entropy of the system remains constant though out the process. A process where
the entropy remains constant is commonly called an isentropic process.

Exercise 3.25. Prove the following statements.

If x and y are two arbitrary equilibrium states of a simple closed system, show the fol-
lowing:

(a) whenever y is reachable from x by an irreversible adiabatic process then S(y)> S(x).
(b) if entropy of the two states satisfy S(y)> S(x) then x can not be reached from y adia-

batically and thus any adiabatic process from x to y must be necessarily irreversible.

29 Using the first law and the Kelvin-Planck version of the second law.
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(c) whenever y can be reached from x by a process of only positive heat interaction (not
necessarily quasi-static), then S(y)> S(x).

These conclusions are illustrated in figure-3.17. Note that these conclusions also imply that
entropy can not reduce in an adiabatic process or in other words that one can not reach a lower
entropy state from a higher entropy state by a pure work interaction process. This also states
that since the entire Universe taken as a system undergoes only adiabatic transitions30, the
entropy of the universe is always increasing.

The exercises below will demonstrate how we can use these properties of entropy to deter-
mine the reversibility or irreversibility of common adiabatic processes.

Fig. 3.17 Irreversible adiabatic processes, purely positive heat interaction processes, and Entropy.

Exercise 3.26. Show that 1 kg of water has less entropy when it is in a solid form than in
a liquid form under atmospheric conditions. Also comment about its entropy when it is in a
gaseous form.

Exercise 3.27. Show that the entropy of an ideal gas is given by:

S(V,T ) = NkB

(
ln(V )+

1
γ−1

ln(T )
)
+a, (3.9)

where V is the volume of the gas, T is the absolute temperature, N is the umber of gas particles,
kB is the Boltzmann constant, γ is the adiabatic index, a is the integration constant known as
the chemical potential of the gas.

Exercise 3.28. Consider an ideal gas contained in an insulated rigid cylinder initially at a
temperature T1. The gas is stirred using a shaft. Show that the process is irreversible.

Exercise 3.29. Consider a gas contained inside a rigid cylinder and initially separated by a
piston. The piston is uninsulated and free to move. A trap door in the piston is opened and the
two gases are allowed to mix. Prove that this process is irreversible.
30 Is this a reasonable assumption?
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Exercise 3.30. Consider a hot metal block of mass m, specific heat capacity cb, and initial
temperature Ti and a large mass of water (reservoir) at an temperature of Tc. Find the maximum
amount of work that can be extracted from the metal block.

Using (3.8) we are now in position to answer the question what QC
QH

= f (TC,TH) is for

a reversible cyclic process operating between two reservoirs. Since QC
QH

is the same for all
reversible cyclic process between the same reservoirs the reversible process we use to compute
QC
QH

is immaterial. In any such one complete cycle of the process let the positive heat interaction
the system has with the source reservoir at temperature TH be QH and let the negative heat
interaction the system has with the sink reservoir at temperature TC be QC. Since the cyclic
process is reversible we can use (3.8) to estimate the entropy change in the system due to the
heat interactions. The entropy increase in the system, in one cycle, due to the positive heat
interaction occurring at temperature TH is (∆S)increase = QH/TH and the entropy decrease in
the system due to the negative heat interaction occurring at temperature TH , in one cycle, is
(∆S)decrease = QC/TC. Thus since entropy depends only on the thermodynamic state, in one
complete cycle of the process we must have 0=(∆S)increase−(∆S)decrease =QH/TH−QC/TC.
Thus we have shown the following:

For any reversible cyclic process operating between two reservoirs at temperature TH and
TC, where TC < TH we must necessarily have

QC

QH
=

TC

TH
.

Hence the maximum possible efficiency of a heat engine operating between two reser-
voirs is given by

ηcarnot =

(
1− TC

TH

)
×100 %, (3.10)

and is termed the Carnot Efficiency, ηcarnot. Any engine that operates at the Carnot
efficiency is in general referred to as a Carnot Engine.

Recall that we have shown in exercise-3.19 and exercise-3.20 that such an engine has to be
a reversible cyclic process. Thus any reversible cyclic process is a Carnot engine.

Exercise 3.31. Justifying each step explain why the cycle shown in figure-3.18 is a Carnot
cycle. Illustrate the process using a P−V curve.

Observe that (3.10) says that in order to extract work from a system undergoing a cyclic
process we necessarily need an energy source and an energy sink and that they should be at
different temperatures. Larger the difference larger the amount of work that can be extracted.

Thus the second law also says that if no thermal gradients exists in the universe, the
conversion of energy into work would be impossible.
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Fig. 3.18 Example of a Carnot Cycle. Figure courtesy of Feynman lectures on physics.

3.6 Clausius statement and irreversibility

At this point we have come across many profound implications of the second law of thermo-
dynamics. What more does the second law tell us. By definition of the Entropy we see that for
a reversible cyclic process

∮
δQ
T = 0. It is interesting to know what happens if a quasi-static

cyclic process is not necessarily reversible. Rudolf Clausius showed that the Kelvin-Planck
version of the second law implies that this quantity has to be necessarily less than or equal to
zero for any general quasi-static cyclic processes. That is:

Clausius Inequality: For any quasi-static cyclic process∮
δQ
T
≤ 0,

where the equality holds if the process is reversible.

This says that if
∮

δQ
T < 0 then the cyclic process must be necessarily irreversible. However

note that this theorem does not say that
∮

δQ
T = 0 implies that the cyclic process is reversible.

Thus there could exist irreversible cyclic processes for which
∮

δQ
T = 0. In fact verify that∮

δQ
T = 0 for both the Otto cycle discussed in exercise 3.11 and the diesel cycle discussed

in exercise 3.12, both of which are non reversible since the heat interactions occur at non-
constant temperature.

Exercise 3.32. Show that the Kelvin-Planck version of the second law implies the Clausius
inequality.

Let us investigate what the Clausius inequality tells us in addition to what we have deduced
so far. Consider any quasi-static process (reversible or not) from an equilibrium state x to an
equilibrium state y as shown by the curve c in figure-3.19. Let cr be a reversible process from
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Fig. 3.19 Implications of the Clausius inequality.

x to y. Then we have that

S(y)−S(x) =
∫

cr

δQ
T

.

Now let us consider the cyclic process of going from x to y along the general possibly irre-
versible process c and then coming back to x by reversing the process cr. Then∮

δQ
T

=
∫

c

δQ
T

+
∫
−cr

δQ
T

=
∫

c

δQ
T
−
∫

cr

δQ
T

=
∫

c

δQ
T
− (S(y)−S(x)).

Since the Clausius inequality says that
∮

δQ
T ≤ 0 we have that

∫
c

δQ
T − (S(y)−S(x))≤ 0 where

the equality hold if the process c is also reversible. We summarize this in the following state-
ment.

For a general quasi-static process, c, from x to y the Clausius inequality implies that∫
c

δQ
T
≤ S(y)−S(x),

where the equality holds if the process, c, is reversible.

From a practical point of view this implies that the quantity∫
c

δQ
T
− (S(y)−S(x))

can be used as a measure of irreversibility and the impossibility of a process. That is:

If
(∫

c
δQ
T − (S(y)−S(x))

)
is strictly greater than zero then the process is impossible

while if it is strictly less than zero then the process is irreversible. Note that even though
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for a reversible process this quantity must be zero the converse is not implied by the
Clausius statement. Thus this quantity being equal to zero will only indicate that the
process ‘might’ be reversible.

Exercise 3.33. A hot metal block initially at a temperature Ti is immersed in a large body of
water that is at a temperature of TC (TC < Ti). Prove that the process is irreversible. You may
assume that the specific heat capacity cb of the block remains constant in this temperature
range.

Exercise 3.34. A hot metal block initially at a temperature Tb is immersed in a rigid and
insulated container of water that is initially at a temperature of Tw (Tw < Tb). After a while it
is noticed that both the block and the water have attained a steady temperature of Tf . Prove
that the process is irreversible. You may assume that the specific heat capacity cb of the block
and cw of the water remains constant in this temperature range and that the mass and specific
heat capacity of the container is negligibly small compared to the mass of the water.

3.7 The microscopic interpretation of entropy

Recall that since a thermodynamic system is a collection of a large number of particles of the
order of the Avogadro’s number, it is impractical to keep track of what happens to each and
every particle in such a collection. Thus we have seen that the best one can do is to prescribe
the average collective behavior of the system using quantities such as the number of particles,
the energy, temperature, volume, and pressure. This average collective behavior is referred to
as the macroscopic state. Various different combinations of the individual behavior of each
of the individual particles will give rise to this collective behavior. A certain combination of
the individual behaviors of the particles is referred to as a microscopic state. In terms of this
terminology we say that there exists many micro-states that correspond to a given macro-state.

Ludwig Boltzmann31 showed that for closed and insulated systems32 the entropy is a mea-
sure of the different number of micro-states that correspond to a given macro-state. That is:

The entropy S of a macroscopic state of an isolated system is given by

S , kB ln(Ω), (3.11)

where Ω is the number of microscopic states that correspond to the given macroscopic
state and kB is the Boltzmann constant.

This shows that higher the number of possible micro-states higher the value of entropy of
a closed system is. From this definition of entropy it is easy to see that the entropy can not be

31 One of the pioneers of the atomic theory of matter.
32 Isolated systems.
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a negative quantity. In the following, we will see using a simple example, that Entropy is an
increasing function of the number of particles, N, the total energy, E, and the volume, V .

The subsequent part of the notes closely follows Chapter-4 of the excellent text by Gould
and Tobochnik titled Thermal and Statistical Phyisics [6]. We will begin by considering a
hypothetical situation that is very close to ‘reality’. We will assume, along with Einstein, that
particles of nature are distinguishable33. In reality they are not. However considering this
hypothetical situation gives us considerable insight into how nature might behave and hence
we will look at it first. Quantum mechanics tells us that the energy of a particle is quantized.
Again for simplicity we will assume that a particle can have only integer values of energy
0,1,2, · · · . In addition if the spatial configurations of the particles can not change then such a
system is called an Einstein Solid.

Let us denote by ΩV (N,E) the total number of different energy configurations that corre-
spond to the macroscopic state of N number of particles, sharing a total energy of E, occupying
a volume V in space. Einstein proved the following result:

ΩV (N,E) = (E+N−1)CE =
(E +N−1)!
E!(N−1)!

.

Exercise 3.35. Prove the above Einstein formula for the number of distinct energy configura-
tions corresponding to a macroscopic state of N number of particles, sharing a total energy of
E, occupying a volume V in space.

We will consider below, the total number of spatial configurations that correspond to a
macroscopic state of N number of particles occupying a total volume V in the case where the
spatial configurations of the particles are allowed to change (ie. the material is not a solid).
We will assume a very simplified situation where each particle has an identical volume Vp
and the space that the particles occupy is divided into boxes which are just big enough to fit
a particle. Then the number of such boxes, n, define the total volume V = nVp of the system.
We will also assume that the particles can move around and occupy any of the boxes and that
no two particles can occupy the same box. Then it is easy to see that the number of spatial
configurations that correspond to the macroscopic state of N particles, with fixed energy E,
occupying the volume V is given by,

ΩE(N,V ) = N!VCN =
V !

(V −N)!
.

33 Can be separately identified. For example they could be of various different colors or may have
labels on them.
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This formula shows that ΩE(N,V ), with fixed energy E, is an increasing function of both
N and V while the above Einstein formula shows that ΩV (N,E) is an increasing function of
both N and E.

From the above two results we have that, for the simplified situation of an isolated set of
distinguishable particles each having discrete energy levels and discrete spatial config-
urations, the total number of microscopic states corresponding to the macroscopic state
of N particles sharing a total energy E occupying a volume V is given by

Ω(N,E,V ) = ΩV (N,E)ΩE(N,V ) =
(E +N−1)!
E!(N−1)!

V !
(V −N)!

.

Thus the total Entropy S corresponding to the macroscopic state of N particles sharing a
total energy E occupying a volume V is given by

S = kB ln(Ω) = kB ln(ΩV ΩE) = kB ln(ΩV )+ kB ln(ΩE).

This shows that the entropy of a macroscopic state is larger if the number of particles
and/or the total energy and/or the volume is larger. It turns out that these conclusions are true
in general as well. We summarize this below:

The number of microscopic states corresponding to a given macroscopic state of an iso-
lated system of particles have an increasing dependence on the number of particles N,
the volume V , and the total energy E. That is Ω(N,E,V ) is an increasing function of the
number of particles N, the volume V , and the total energy E.

For an Einstein solid there is only one spatial configuration and hence ΩE(N,V ) = 1. The
Einstein formula shows that when the Energy E is zero then ΩV (N,0) = 1 for any number of
particles34. Thus for an Einstein solid the entropy tends to zero when the energy tends to zero.
For a non-solid system of particles ΩE(N,V ) > 1 and thus, for a non-solid system when the
energy tends to zero the entropy approaches a minimum. We have seen that the temperature,
T , is a measure of the energy of a particle thus when the temperature T tends to zero it implies
that the energy also tends to zero and hence the volume also tends to zero therefore we have
the following result that is commonly stated as the third-law of thermodynamics.

Axiom 3.4 - Third Law of Thermodynamics: The entropy of a state tends to a mini-
mum as the absolute temperature tends to zero.

34 Obviously.
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It is an empirically observed fact that the absolute temperature T of a system can not reach
zero and this is sometimes considered as the fourth law of thermodynamics.

3.7.1 Adiabatic Processes and Entropy

In order to develop an intuition about what happens to the entropy in an adiabatic process
we will consider two distinct examples of adiabatic mixing processes: 1.) Energy mixing or
what is commonly referred to as thermalization, and 2.) Particle mixing or what is commonly
known as diffusion. We will see that entropy increases in both these adiabatic processes. We
will also see that entropy is greater for states that are most likely to occur. Thus demonstrating
that entropy increase is an indication of irreversibility.

Example-1: Thermalization

Fig. 3.20 Two systems, of two particle Einstein solids, separated by a rigid wall: a) The wall is ther-
mally insulated. b) The wall is thermally conducting. Figure is copied from Chapter-3 of the text by
Harvey Gould and Jan Tobochnik titled ‘Thermal and Statistical Physics’ [6].

As an approximation of the case of two gases separated by a piston inside a cylinder let us
consider a specific example of a set of four distinguishable particles contained in a box that is
separated into two distinct parts by means of a rigid partition as shown in figure-3.20. Each
side contains two particles each and for simplicity of computations we will assume that each
of these pairs exist like in a solid. That is, particles of each of the pairs have a definite spatial
configuration. The two particles on the left side will be labelled R and G while the two on the
right hand side will be labelled B and W . We will also assume that the only information that we
can get35 is the total energy of the particles on each side. Since the particles are isolated from
the rest of the Universe the total sum of the energies of all the four particles always remains

35 The only measurements that we can make.
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the same36. Thus the total energy of the particles on one side specifies a certain macroscopic
state of the collection of particles.

Initially the system is in the macroscopic state shown in figure-3.20(a). The total energy
of the particles on the left side A is EA1 = 5 and the total energy of the particles on the
right side B is EB1 = 1. The number of micro-states that correspond to this macro-state is
thus Ω(EA = 5 & EB = 1) = 6× 2 = 12 and the corresponding entropy of the system is
S(EA = 5 & EB = 1) = kB ln(12).

Let us consider what happens if we remove the insulation of the partition. That is, we
assume that the particles can exchange energy through collisions with the partition. If we
insist on that the total energy is conserved (First law of thermodynamics) then we should
have that EA +EB = 6 and that the total number of micro-states that will correspond to this
macroscopic state is equal to Ω(EA +EB = 6) = 9C6 = 84. Thus we have that S(EA +EB =
6) = kB ln(84) > S(EA = 5 & EB = 1). This corresponds to the observation that when two
systems at two different temperatures are allowed to interact the entropy of the composite
system increases.

If the occurrence of a given micro-state is assumed to be random let us investigate the
probability of finding a system with a given energy partition of EA and EB = (E−EA). It is
reasonable to assume that each microscopic state corresponding to a given macroscopic state is
equally likely to occur. That is there is nothing special about any of the microscopic states that
correspond to a given macroscopic state. Let us compute the probability of finding the system
in a micro-state such that the total energy of the particles in the left side is EA and on the right
side is EB = E−EA. We see that the total number of microscopic states that will result in a
total energy of EA on the left side is EA+1CEA× 6−EA+1C6−EA = (EA +1)× (6−EA +1). Thus
the probability of finding the system in a micro-state where the total energy of the particles
in the left side is EA is given by p(EA) = (EA + 1)× (6−EA + 1)/84. In the table below we
compute this quantity for the various different possibilities of EA = 0,1,2,3,4,5,6.

EA 0 1 2 3 4 5 6

Ω(EA) 7 12 15 16 15 12 7

S(EA) ln(7) ln(12) ln(15) ln(16) ln(15) ln(12) ln(7)

p(EA)
7
84

12
84

15
84

16
84

15
84

12
84

7
84

Thus we see that the most probable and hence the most likely situation that would occur is
when the energies of the two sides are the same. In fact the expectation37 of EA, that is the
value that you expect to ‘mostly’ get if you repeatedly measure the energy of the left hand
side, is:

〈EA〉=
6

∑
EA=0

EA p(EA) = 0× 7
84

+1× 12
84

+2× 15
84

+3× 16
84

+4× 15
84

+5× 12
84

+6× 7
84

= 3.

36 The first law of thermodynamics.
37 The average value.
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Note that the entropy of this equally shared energy macro-state is also the maximum entropy
macro-state. Figure-3.21 shows the probability distribution for each of the macroscopic states
corresponding to subsystem A having a total energy EA = 0,1,2, · · · ,20 for NB = NA = 60 and
E = 20 and it is clear that the macroscopic state where the energy is equally shared on each
side is the most likely to occur. We also find in this case that 〈EA〉 = 10 and that entropy of
this state is also a maximum.

We find that these conclusions are true in general as well. That is, for an isolated system,
the most likely possibility is for the energy to be equally shared (equipartition of energy) and
that the entropy of this state is a maximum. Since the energy shared state is the most likely
to occur if one starts with the state where the energy was unevenly distributed and allow the
energies to be shared then the initial state is less likely to occur after equilibrium has set in.
Thus indicating an irreversibility of the energy mixing process.

Fig. 3.21 The probability distribution p(EA) Vs EA for the macroscopic state of subsystem A having a
total energy EA for NB = NA = 60 and E = 20.

Example-2: Diffusion

Consider a box made of two identical compartments separated by a partition with several holes
in it. Each of the holes are big enough for a particle (you may visualize them as marbles) to
move through it and we will assume that no particle will ever get stuck in a hole. A total of
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n = 2N number of distinguishable particles of identical mass are contained in the box. We
will assume that the mass of a particle is m. A scale is fixed to the bottom of the left hand side
compartment of the box so that it displays the total weight of the particles on the left hand
side of the box. Consider the problem of randomly shaking the box. The mass of the left hand
side of the box, read out using the scale, can be considered to be a measurement or in other
words a macroscopic variable of the system. Denote this measurement by ML. We will call a
particular configuration where ML = mk = k m, that is the situation where there are k number
of particles in the left hand side, the macroscopic state denoted by mk. If we randomly shake
the system and then stop and read out the reading on the scale (that is the total mass of the
particles on the left hand side) what is the value that we would expect to get?

To answer this question we proceed as follows. Let us call a particular distribution of the
particles in the box a microscopic state. Since we are only interested in knowing if a given
particle is in the left or right we see that there are a total of 2n number of possible configu-
rations or microscopic states of the system. If the shaking is random, given the information
we have, the most reasonable (unbiased) conclusion that we can make is that each micro-state
of the system (a particular distribution of the particles) is equally likely to occur at any given
moment. Then the probability of finding the system in any one of the micro-states is 1/2n. The
total number of microscopic states that will result in the macroscopic state ML = mk, denoted
by Ω(mk) is given by the number of k choices that we can make from n options:

Ω(mk) =
nCk.

The entropy of the system when in the macroscopic state xk is by definition

S(mk) = kB ln(Ω(mk)) = kB ln(nCk).

The probability of finding the system in the macroscopic state mk is given by

p(mk) =
nCk

1
2n .

Then the mass reading that we would expect to get, 〈ML〉, is given by

〈ML〉=
n

∑
k=0

mk p(mk).

We have computed Ω(mk), p(mk),S(mk) for n = 6 in the table below.
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k Ω(mk) p(mk) S(mk)

0 1 1
26 0

1 6 6
26 kB ln(6)

2 15 15
26 kB ln(15)

3 20 20
26 kB ln(20)

4 15 15
26 kB ln(15)

5 6 6
26 kB ln(6)

6 1 1
26 0

From the results we see that the condition where an equal number of particles are in the left
and right hand side has the maximum probability of occurring and hence is the most likely
state to occur. Notice that the entropy of this state is also the maximum. Furthermore we also
see that the expected value of the mass on the left hand side is given by

〈ML〉= m
(

0× 1
26 +1× 6

26 +2× 15
26 +3× 20

26 +4× 15
26 +5× 6

26 +6× 1
26

)
= 3m,

confirming our intuition that on average we would expect to read the value 3m on the scale.
This shows that the probability of finding half the marbles in one side is the most likely
configuration that could occur if we randomly shake the box for a while and then stop. It is
easy to show that this is in fact true for any n = 2N.

Let us try to see what all of this means. Imagine the case where initially all the particles
are in the left hand side partition of the box. Recall that we do not care about how a particle
is positioned in each side and that we only care about whether it is in the left or the right side
of the box. Thus the initial entropy of the system, according to Boltzmann, is zero. Then let
us start shaking the box for a long time and then open it to see how many marbles are in the
left side of the partition. From the probability calculations shown above we see that the most
likely state that would occur is the condition where the marbles are evenly distributed between
the two halves and that the entropy of this state corresponds to a maximum. This agrees very
well with our previous experience of what happens when a gas is confined to one side of a
container and then allowed to diffuse over the entire cylinder. Thus the most mixed state is the
one that is the most likely to occur and the entropy corresponding to this maximally mixed
state is the maximum. We also see that how ever much you shake the box, obtaining the initial
configuration of all the particles being in the left side is less unlikely.

Thus we see that if microscopic states of an isolated system occur in a random fashion
the macroscopic state that are most likely to occur have the maximum entropy.
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3.7.2 What does Boltzmann Entropy tell us ?

(a) Entropy is greater than or equal to zero.
(b) Higher the number of microscopic states higher the entropy.
(c) Entropy is a measure of the uncertainty about the microscopic state of the system.
(d) Entropy is an increasing function of the number of particles, the volume, and the total

energy.
(e) The macroscopic state where the energy and the number of particles are evenly dis-

tributed is the most likely to occur and has the highest entropy.
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Chapter 4
Introduction to Statistical Thermodynamics

Though accessible, the material covered in this section may be considered as beyond the scope
of the GP111 syllabus. We have seen that that there exists many micro-states that correspond to
a given macro-state. A macro-state is characterized by some average behavior of the collection
of particles. Variables such as the number of particles, energy, temperature, pressure, and
volume are some quantities that represent this average behavior and hence help characterize
the macroscopic state. Given such information what is the best estimate that we can make of
any other unknown property of the system? What we mean by best here is that those estimates
must be unbiased. We will see that maximizing entropy gives us such an unbiased estimate
[7]. That is we shall see that by starting with entropy as a fundamental property and applying
notions of statistical inference allows us to recover the principles of statistical mechanics
without having to invoke any additional assumptions other than the classically known laws of
nature.

Let us denote by X the set made up of all possible situations that the system and the
surrounding can exist1. Since there is practically no way of inferring the microscopic state of
a system nor the exact influence the surrounding has on the system the best we can do is to
assume that the microscopic states of the system occur according to some random probability
distribution. Or more precisely, we will assume that the micro-state of the system is a random
variable X : X →{x1,x2, · · · ,xk} where {x1,x2, · · · ,xk} is a list of all possible micro-states2.
Denote by P({X = x j}) = p j the probability of the random variable X taking the value x j.
That is, denote by p j the probability of finding the system in the microscopic state denoted
by x j. We see that any measurement of the system must also be a random variable that only
depends on the random variable X .

Formally stated, measurements of the system are random variables that are only a func-
tion of the random variable X that prescribes the microscopic state of the system.

For a given system the number of particles and the energy of the system are some such
random variables. Depending on what information (the measurements) we have about the
system we can classify systems into three distinct groups.

1 That is all possible outcomes of the system plus surrounding
2 Here k can be infinite.
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Open Systems: Systems that can exchange both particles and energy with the surround-
ing. Both the energy and the number of particles of the system can change and can be
measured. That is the measurements we have are the number of particles N(X) and the
Energy E(X).

Closed Systems: Systems that can exchange only energy with the surrounding. The
energy of the system can change E(X) while the number of particles N remains fixed.
Thus the only measurement we have is the energy E(X).

Isolated Systems: Systems that can not exchange particles nor energy with the sur-
rounding. We have no information of the system other than that the energy E and the
number of particles N remain fixed.

In each of these macroscopic circumstances what is the best that we can say about the mi-
croscopic state of the system. That is the question that we will try to address in the following.
Specifically what we will answer is: if the only information we can obtain is the expectations
of fi(X) for some set of m number of functions of X what is the best that can be said about the
expectation of g(X)?. What we know is the expectation (average) of fi that we will denote by
〈 fi(x)〉 or f̄i. What we do not know is the probability distribution {p j}k

j=1 of X . That is, we
know that

f̄i = 〈 fi(x)〉,
k

∑
j=1

fi(x j)p j, (4.1)

1 =
k

∑
j=1

p j, (4.2)

but we do not know the {p j}k
j=1. Note that condition (4.2) is a consequence of {p j}k

j=1 being
a probability distribution and correspond to the simple statement that the probability of some
microscopic state occurring must be one. The problem we need to solve is to find the most
unbiased probability distribution {p j}k

j=1 given the information (4.1). Intuitively the most
unbiased distribution should be the one with the most uncertainty. Claude Shannon [8] proved
that the the notion of entropy used in thermodynamics is a measure of the intuitive notion of
the uncertainty of the probability distribution of the random variable. Or in other words he
proved that the most unbiased probability distribution {p j}k

j=1 of the random variable X must
maximize the entropy.

In the general setting of probability and statistics, the entropy of a random variable X
was defined by Claude Shannon to be

S(X),−kB

k

∑
j=1

p j ln p j. (4.3)
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We will see later that this definition reduces to the one given by Boltzmann for isolated
systems. Thus the way that one should proceed to solve the problem of finding the most
unbiased probability distribution {p j}k

j=1 given the information (4.1) is to find the probability
distribution {p j}k

j=1 that maximizes the entropy of X subjected to the constraint (4.1). This
is known as maximum entropy inference. Formally stated we find the probability distribution
that solves the optimization problem

{p∗j}= max
{p j}

(
S+ γ̃

(
1−

k

∑
j=1

p j

)
+

m

∑
i=1

λ̃i

(
f̄i−

k

∑
j=1

p j fi(x j)

))
.

The constants γ̃ and λ̃i are known as the Lagrange multipliers associated with the respective
constraints. The solution to this constrained optimization problem is given by the solution of

0 = dS+
m

∑
i=1

λ̃id

(
f̄i−

k

∑
j=1

p j fi(x j)

)
+ γ̃d

(
1−

k

∑
j=1

p j

)
,

=
k

∑
j=1

(
−kB(1+ ln p j)− γ̃−

m

∑
i=1

λ̃i fi(x j)

)
d p j.

Thus we see that the probability distribution that maximizes the entropy and satisfies (4.1) and
(4.2) must satisfy (

−kB(1+ ln p j)− γ̃−
m

∑
i=1

λ̃i fi(x j)

)
= 0,

for every j. Thus probability distribution that maximizes the entropy and satisfies (4.1) and
(4.2) takes the form

p∗j = e−γ−λ1 f1(x j)−λ2 f2(x j)···,

where we have defined γ = 1+ γ̃/kB and λi = λ̃i/kB. Then by defining Z , eγ , we have that
the constraint (4.2) implies:

Z(λ1, · · · ,λm) =
k

∑
j=1

exp(−λ1 f1(x j)−λ2 f2(x j) · · ·), (4.4)

p∗j =
1
Z

exp
(
−λ1 f1(x j)−λ2 f2(x j) · · ·

)
. (4.5)

The variable Z(λ1, · · · ,λm) is known as the Partition Function and depends only on the La-
grange multipliers λ1, · · · ,λm.

Thus if one knows how to list the possible values of fi(x j) for all i and j (that is we
know the value that the measurement fi will take if the system is in the state x j) then one
can uniquely determine the maximum entropy probability distribution, {p∗j}k

j=1, of the
random variable X in terms of the Lagrange multipliers λi.
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From (4.4) and (4.5) we also find that

〈 fi(x)〉=−
∂

∂λi
lnZ, (4.6)

S = kB (lnZ +λ1〈 f1(x)〉+λ2〈 f2(x)〉+ · · ·) , (4.7)

λi =
∂S

∂ 〈 fi(x)〉
(4.8)

〈 f 2
i (x)〉−〈 fi(x)〉2 =

∂ 2

∂λ 2
i

lnZ. (4.9)

In addition if the functions fi(x,α1, · · · ,αk) also depend on some other parameters αr then by
taking the partial derivative of lnZ it follows that

m

∑
i=1

λi

〈
∂ fi

∂αr

〉
=− ∂

∂αr
lnZ. (4.10)

Thus from a thermodynamics point of view, these expressions, demonstrate that analytically
finding the partition function Z determines the Entropy and all the measurements. In turn to
find the partition function Z what one needs are the Lagrange multipliers and the knowledge of
what each of the measurements fi will take if the system is in any of its particular microscopic
states x j. By computing the differential of S from (4.7) we also find that

dS =
m

∑
i=1

kBλi (d 〈 fi〉−〈d fi〉) =
m

∑
i=1

kBλi

(
d〈 fi〉−∑

r

〈
∂ fi

∂αr

〉
dαr

)
,

=
m

∑
i=1

kBλid〈 fi〉+ kB ∑
r

∂ lnZ
∂αr

dαr. (4.11)

Picking the measurements fi, which denotes the measured quantities, entirely determines
the thermodynamics of the problem. If both the number of particles and the total energy of the
particles remains fixed in a system (an isolated system) then the resulting maximum entropy
probability distribution (4.5) is simply the uniform distribution of p∗j(x j) = 1/Ω where Z = Ω

is the total number of micro-states. This distribution is referred to as the Micro-canonical En-
semble. On the other hand if only the number of particles of the system is fixed (a closed
system) and the system can exchange energy with the surrounding through heat interactions
then picking f to be the energy results in the maximum entropy probability distribution known
as the Canonical Ensemble. Similarly if the system interacts with the surrounding by exchang-
ing both particles and energy (open systems) then by picking f1 to be the energy and fi to be
the number of particles of the ith type results in the probability distribution what is knows as
the Grand Canonical Ensemble. Below we will derive these results and take a brief look at
the thermodynamics of these three ensembles. We will start with the Canonical Ensemble then
look at the more general Grand Canonical Ensemble and finally look at the Micro-canonical
Ensemble.
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4.1 Thermodynamics of the Canonical Ensemble

Let us consider a closed system that is thermally interacting with a reservoir (or thermal bath).
That is a system that can only exchange energy with the thermal bath. A thermal bath, by
definition being a system of a very large number of particles, has invariant properties that do
not change due to its interaction with the system. The energy of the system also depends on
the volume V occupied by the particles. For a given system of particles, the volume V of the
system and the invariant properties of the thermal bath uniquely define the problem. If what
we can measure is only the average energy, U , 〈E〉, of the system and we know what the
energy is for each of the microscopic states then by setting f1(x j,V ) = E(x j,V ) = E j we have
from (4.4) that the corresponding partition function is given by

Z = ∑
j

e−λE j , (4.12)

and from (4.5) we see that the corresponding maximum entropy probability distribution of
finding the system in the jth state x j is given by

p(x j) =
1
Z

e−λE j . (4.13)

This is known as the Canonical Ensemble. The partition function Z will depend only V , and
the invariant properties that characterize the thermal bath.

The Lagrange multiplier λ corresponding to the energy measurement of the system is a
constant. Thus we can use it to characterize the invariant properties of the thermal bath. That
is we will see that defining

T ,
1

kBλ
,

to be the ‘temperature’ of the thermal bath allows us to recover all of the conventional notions
of thermodynamics as well as some more.

With this definition of temperature of the thermal bath from (4.12), (4.13), (4.7), and (4.8)
we have that

Z(T,V ) = ∑
j

e−
E j

kBT ,

p(x j) =
1
Z

e−
E j

kBT ,

S(U,T,V ) = kB lnZ +
1
T

U,

∂S
∂U

=
1
T
.

Note that if we set F(T,V ),−kBT lnZ then we find from the above expressions that

S =−∂F
∂T

,

U = T S+F.
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The function F(T,V ) is called the the Helmholtz free energy of the system and it uniquely
determines the entropy S and the total energy U of the closed system.

From (4.7) and (4.11) we also find that

dS =
1
T

(
dU−

〈
∂E
∂V

〉
dV
)
=

1
T

(
dU + kBT

∂ lnZ
∂V

dV
)
=

1
T

(
dU− ∂F

∂V
dV
)
.

From which we have

dU = T dS+
∂F
∂V

dV.

On the other hand the principle of conservation of energy (the 1st-law) for a closed system
says that dU = δQ−δW = δQ−PdV where P is the pressure of the system. Thus comparing
with the above total differential dU we may define

δQ = T dS,

P ,−∂F
∂V

=

〈
∂E
∂V

〉
= T

∂S
∂V
− ∂U

∂V
.

Therefore we see that:

Defining the temperature of the thermal bath to be T = 1/kBλ and the knowledge of the
Helmholtz free energy F(T,V ) , U −T S allows us to recover all the classical thermo-
dynamic notions of a closed system.

From (4.11) we also have

dS =
1
T
(dU−〈dE〉).

Thus by comparing with the first law of thermodynamics we also see that 〈dE〉= δW .
From U = T S+F we have that the heat capacity of the closed system is given by

CV =
∂U
∂T

= T
∂S
∂T

.

From (4.9)

〈E2〉−〈E〉2 = ∂ 2

∂λ 2 lnZ =− ∂ 2

∂λ 2 λF =−2
∂F
∂λ
−λ

∂ 2F
∂λ 2

= 2kBT 2 ∂F
∂T
− k2

BT 2

kBT

(
2T

∂F
∂T

+T 2 ∂ 2F
∂T 2

)
=−kBT 3 ∂ 2F

∂T 2 = kBT 3 ∂S
∂T

= kBT 2CV .
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Thus we have that the heat capacity of the system is

CV =
1

kBT 2

(
〈E2〉−〈E〉2

)
.

This shows that the heat capacity of the closed system is a measure of the variance of the
energy distribution of the system among its micro-states.

Example: A Single Quantum Harmonic Oscillator

In this section we will find the thermodynamic properties of a single quantum harmonic os-
cillator thermally interacting with a thermal bath at temperature T . We know that a quantum
harmonic oscillator has the energy levels

E j = h̄ω

(
1
2
+ j
)
.

Thus we have that the partition function is given by

Z(T ) =
∞

∑
j=0

e−
E j

kBT = e−
h̄ω

2kBT
∞

∑
j=0

(
e−

h̄ω

kBT
) j

=
e−

h̄ω

2kBT

1− e−
h̄ω

kBT

Then the Helmholtz free energy, the entropy, and the average energy are given by

F(T ) =
(

h̄ω

2
+ kBT ln

(
1− e−

h̄ω

kBT
))

,

S =−kB

ln
(

1− e−
h̄ω

kBT
)
− h̄ω

kBT
1(

e
h̄ω

kBT −1
)
 ,

U = h̄ω

1
2
+

1(
e

h̄ω

kBT −1
)
 ,

CV =
1
kB

(
h̄ω

T

)2

 e
h̄ω

kBT(
e

h̄ω

kBT −1
)2

=
1
kB

(
h̄ω

T

)2

 1(
sinh

√
h̄ω

kBT

)2

 .

4.2 Thermodynamics of the Grand Canonical Ensemble

Let us consider an open system that is thermally interacting with a reservoir. That is a system
that can exchange both energy and particles with the reservoir. For convenience we will as-
sume that the reservoir and the system has only one type of particles. A reservoir, by definition
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being a system of a very large number of particles, has invariant properties that do not change
due to its interaction with the system. For an given open system the energy of the system
depends on the pressure P of the system.Thus the pressure P of the system and these invariant
properties of the thermal bath uniquely define the problem. If what we can measure is the aver-
age number of particles, N , 〈n〉 and the average energy, U , 〈E〉, of the system and we know
what the the number of particles and the energy are for each of the microscopic states then
by setting f1(x j) = E(x j,P) = E j and f2(x j,P) = n(x j,P) = n j we have from (4.4) and (4.5)
that the maximum entropy probability distribution of finding the system in the micro-state x j
is given by

Z = ∑
j

e−λ1E j−λ2n j , (4.14)

p(x j) =
1
Z

e−λ1E j−λ2n j . (4.15)

This is known as the Grand Canonical Ensemble. We will see that it is completely determined
by the pressure P and the invariant properties of the reservoir.

Again as in the previous section since the Lagrange multipliers λ1 and λ2 are constant
we take them to characterize the invariant properties of the reservoir. Thus we define the
temperature T and the chemical potential µ of the reservoir as

T ,
1

kBλ1
, µ ,−kBT λ2.

Then we have that (4.14), (4.15), (4.7), and (4.8) become

Z = ∑
j

e
(

µn j−E j
kBT

)
,

p(x j) =
1
Z

e
(

µn j−E j
kBT

)
,

S = kB lnZ +
1
T

U− µ

T
N,

∂S
∂U

=
1
T
,

∂S
∂N

=−µ

T
.

Note that if we define G(µ,T,P),−kBT lnZ then from the above expressions we have that

S =−∂G
∂T

,

N =−∂G
∂ µ

U = T S+µN +G.
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The function G(µ,T,P) is called the the Gibbs free energy of the system and if known
it uniquely determines the entropy S, the average number of particles N, and the total
energy U .

From (4.7) and (4.11) we also find that

dS =
1
T

(
dU−

〈
∂E
∂P

〉
dP
)
− µ

T

(
dN−

〈
∂n
∂P

〉
dP
)

=
1
T

(
dU−µdN + kBT

∂ lnZ
∂P

dP
)

From the above expression we have

dU = T dS+µdN +
∂G
∂P

dP.

On the other hand the principle of conservation of energy (the 1st-law) for an open system
says that

dU = δQ−δW +δH f = δQ−PδV +δH f = δQ−d(PV )+V dP+δH f ,

where δH f is the net flow of enthalpy into the system and hence

dH = δQ+V dP+δH f .

In light of this re-arranging the previous expression for dU we have

d(U−µN) = T dS+
∂G
∂P

dP−Ndµ.

Thus from the above expression we have

δQ = T dS,

V ,
∂G
∂P

,

δH f =−Ndµ,

H ,U−µN.

Thus notice that defining the temperature as T = 1/kBλ1 and the chemical potential as
µ = −λ2kBT we recover the classical definition of Entropy and that the volume is equal to
∂G
∂P

. Thus we see that:

Defining the temperature to be T = 1/kBλ1 and the chemical potential as µ = λ2kBT and
the knowledge of the Gibbs free energy G(µ,T,P) = H−T S allows us to recover all the
classical thermodynamic notions of an open system.
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4.3 Thermodynamics of the Microcanonical Ensemble

Consider a closed system of N fixed number of particles contained in a volume V that is
isolated from the rest of the Universe. The total energy of the system E and the total number
of particles N are a constant for all microscopic states. Then there are no constraints of the
form (4.1) and thus the maximum entropy probability distribution (4.5) is simply the uniform
distribution of p∗j(x j) = 1/Ω where Z , Ω is the total number of micro-states. This in fact
makes perfect sense if there is no information available other than the number of states there
is no reason to believe that any one of the states is any special than any other. Thus the best
we can conclude is that all states are equally likely.

Thus for isolated systems, since p∗j(x j) = 1/Ω we immediately have that

S = kB lnΩ ,

in agreement with the Boltzmann definition of Entropy we saw in (3.11).
By taking the derivations of the Section-4.2 as formal definitions one can then define T,P

and µ of the isolated system using the Entropy S(N,V,T,µ) as

G =−kBT lnZ =−T S
U = T S+µN +G = µN,

∂S
∂U

=
1
T
,

∂S
∂V

=
P
T
+

1
T

∂U
∂V

,

∂S
∂N

=−µ

T
.
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Chapter 5
Summary: What do the laws of thermodynamics tell us?

Finally let us summarize below all the consequence of the laws of thermodynamics that we
have encountered in this study:

(A) Work can not be created out of nothing since energy can not be created or destroyed.
(B) Reversible heat engines are the best in terms of efficiency and result in the maximum

amount of energy conversion.
(C) The maximum amount of energy that can be converted into work in a cyclic process

depends only on the temperatures of the reservoirs.
(D) If no thermal gradients existed in the universe, the conversion of energy into work

would be impossible.
(E) Energy transfer from a cold body to a hot body without the aid of mechanical work

is impossible.
(F) There exists a property of the thermodynamic equilibrium state of a system called

entropy, S, such that:
(a) For reversible processes ∆S =

∫
δQ
T .

(b) For reversible adiabatic processes entropy remains a constant.
(c) Entropy never decreases in an Adiabatic processes.
(d) For pure positive heat interaction processes the entropy of the system increases.

(G) The quantity
(∫

c
δQ
T − (S(y)−S(x))

)
serves as a measure of the irreversibility of a

general process, c.
(H) Entropy measures the number of possible micro-states that correspond to a given

macro-state and hence has to be a non-negative quantity.
(I) Entropy is an increasing function of the number of particles, the volume, and the total

energy.
(J) Entropy is a measure of the uncertainty of the knowledge of the microscopic state of

the system.
(K) A maximally mixed state is the most likely to occur and the entropy corresponding

to this state is the maximum. This means that isolated systems tend to a maximally
mixed state (thermalization and diffusion) and that this process is irreversible.
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Chapter 6
Thermodynamics of open systems

Fig. 6.1 Open thermodynamic system.

Consider the open system with one inlet and one outlet as shown in figure-6.1. We are in-
terested in estimating the thermodynamic properties of the system. Let us consider the effects
on the system during a small time interval δ t. This is shown in figure-6.2. Let us apply the
principles of conservation of mass and conservation of energy for the system at t and at t+δ t.
Let Pi,Ti be the inlet pressure and temperature and let δmi and δEi be the mass and the total
energy that comes into the system (the control volume) through the inlet during the time in-
terval δ t. Similarly let Po,To be the outlet pressure and temperature and let δmo and δEo be
the mass and the total energy that goes out of the system through the oulet during the time
interval δ t. Also let δQ be the heat coming into the system and δW the work done by the
system during the time interval δ t. Then for non-nuclear reactions the mass of the system is
conserved and the energy of the system is conserved and we have:

m+δmi = m+δm+δmo,

δEi +U +δQ−δW = δEo +U +δU

Which gives us

δm = δmi−δmo, (6.1)
δU = δQ−δW +(δEi−δEo). (6.2)
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At time t At time t +δ t

Fig. 6.2 Open thermodynamic system energy and mass balance during a small time interval δ t.

The inlet and outlet energy consists of the internal energy, the kinetic energy, potential
energy, chemical energy, other forms of energy and the work done by the flow. Recall that
the in flow work is equal to δmiPivi and the out flow work is equal to δmoPovo where vi
and vo are the specific volumes of the inlet and outlet flow respectively. Also notice that the
internal energy inflow is ṁiuiδ t and the internal energy outflow is ṁouoδ t where ui and uo are
the specific internal energies of the inlet and outlet flow respectively. Thus it turns out to be
convenient to combine the two terms u+Pv which is termed the specific enthalpy. Thus

δEi = δmiui +δmiPivi +
δmi

2
c2

i +Eotheri = δmihi +
δmi

2
c2

i +Eotheri, (6.3)

δEo = δmouo +δmoPovo +
δmo

2
c2

o +Eothero = δmoho +
δmo

2
c2

o +Eothero, (6.4)

where hi,ci denotes the inlet specific enthalpy, the inlet speed while ho,co denotes the outlet
specific enthalpy and the outlet speed.

Equations (6.1)–(6.4) are all you need for problems involving closed and open systems. A
flow process is said to be steady if δm = 0 and δU = 0 and un-steady otherwise.

If the system is insulated then the heat interaction can be neglected and we would have
δQ ≡ 0. If the system has no work output and the control volume does not change then
δW ≡ 0.

6.1 Steady flow processes

For steady flow processes δm = 0 and δU = 0. For convenience we will only consider pro-
cesses where the other forms of energy do not change during the process.

6.1.1 ideal gas steady flow processes

From (6.1)–(6.4) and h = cpT we have

δmi = δmo , δm f l, (6.5)
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δW −δQ = δm f l(hi−ho)+
δm f l

2
(c2

i − c2
o) = δm f lcp(Ti−To)+

δm f l

2
(c2

i − c2
o). (6.6)

Exercise in Prof. Sivasegaram’s tutorial on steady flow: Q 1 Air enters a nozzle at a pres-
sure of Pi, temperature Ti, and mass flow rate ṁ f l . It leaves the nozzle with an exit pressure of
Po. The mean velocity at entry is ci and exit is co. Find the exit temperature To.

Exercise in Prof. Sivasegaram’s tutorial on steady flow: Q 3 Air flows through a uniform
pipe heated from the outside. The temperature and pressure are respectively Ti and Pi at inlet
and To and Po at exit. If the mass flow rate is ṁ f l and the pipe cross sectional area is A,
calculate the mean velocity at inlet and exit and the rate of heat gain of the air.

Exercise in Prof. Sivasegaram’s tutorial on steady flow: Q 4 A mixing device is required
to cool hot air at temperature Th and pressure Ph with a mass flow rate of ṁh by mixing it with
cool air at temperature Tc and pressure Pc. Neglecting heat interactions between the vessel
and the surroundings answer the following:

(a) Neglecting kinetic energy and assuming an exit pressure of Pm find the necessary rate of
flow of cold air.

(b) If the entry velocity is ch and cc for the hot and cold air, and the exit velocity of the
mixture leaving at Pm is cm, calculate the exit temperature of the mixture for the air flow
rates above.

Exercise in Prof. Sivasegaram’s tutorial on steady flow: Q 8 Helium enters a gas turbine
at a temperature of Ti and pressure Pi with a mass flow rate of ṁ f l and after expansion leaves
at a temperature of To and pressure of Po. If the entry velocity is ci and the exit velocity is co,
calculate the power produced by the turbine. (Neglect heat interaction with the surrounding).

6.1.2 Non-ideal gas steady flow processes

The difference is that now you can not use h = cpT and u = cvT and any of the ideal gas re-
lationships. You should basically apply the mass and energy balance given by the expressions
(6.1)–(6.4). For steam-and water use the steam tables to estimate the enthalpies.

Exercise in Prof. Sivasegaram’s tutorial on steady flow: Q 5 A separator is used to re-
move water droplets from steam of dryness fraction xs. Steam with a flow rate of ṁs enters
the device at a pressure of Ps and on removal leaves at the same pressure and a dryness
fraction of xd .

(a) If the condensed water leaves at a pressure of Ps find the rate of removal of water. (Neglect
the heat interaction with the surrounding).

(b) If the condensed water leaves at a pressure of Po, corresponding to atmospheric condi-
tions, find the rate of removal of water. (Neglect the heat interaction with the surrounding).

Exercise in Prof. Sivasegaram’s tutorial on steady flow: Q 7 Steam of dryness fraction xs =
0.85 at a pressure of Ps = 1 bar is condensed at the rate of ṁs = 30 kg/s in a condenser using
cooling water entering the condenser at an temperature Ti = 25oC.
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(a) If the exit cooling water temperature is To = 33oC find the necessary rate of supply of
cooling water. (Neglect changes in Kinetic and Potential energies).

(b) If the coolant supply rate is increased by ∆ ṁ = 80kg/s what will be the exit temperature
of the coolant?

Exercise 6.1. A closed system consisting of H2O undergoes a cyclic process as shown in
figure-6.3. Assume that the processes 3→ 4 and 1→ 2 are reversible adiabatic processes.
The boiler pressure is 100 kPa while the condenser pressure is 1kPa. The H2O leaving the
condenser is at saturated liquid conditions and the H2O entering the turbine are at saturated
vapor conditions. You may also assume that the specific heat capacity of sub-cooled water at
100 kPa is approximately c f p = 4.2 kJ/kg.K. Answer the following:

Fig. 6.3 The schematic of a cyclic process on which the steam engines are based on.

P T vg u f ug h f h f g hg s f s f g sg

kPa C m3/kg kJ/kg kJ/kg kJ/kg kJ/kg kJ/kg kJ/kg.K kJ/kg.K kJ/kg.K

1 99.6 1.694 417 2506 418 2257 2675 1.3028 6.0560 7.3588

10 179.9 0.194 762 2583 763 2015 2778 2.1381 4.4469 6.5850

Table 6.1 Steam table extracts for exercise-6.1.

1. Sketch the cyclic process in a Temperature versus specific entropy space (ie. in T Vs s
space).
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2. Show that the efficiency η of the cycle is given by

η = 1−
(

h4−h1

h3−h2

)
,

where hi denotes the specific enthalpy of the it state.
3. Find the efficiency of the cyclic process.
4. Sketch the modifications that you will do to this cyclic process, without changing the oper-

ating pressures, in order to obtain the maximum possible efficiency and find this efficiency.

6.2 Unsteady flow ideal gas processes

Though accessible and is a simple consequence of the law of conservation of energy,
the material covered in this section may be considered as beyond the scope of GP111.
For convenience we will assume that the flow velocities are very small and hence the kinetic
energies can be neglected. Recall that for an ideal gas we have u = cvT , h = cpT , PV =
(γ−1)U and (γ−1) = R

cv
. Then from (6.1)–(6.4) we have

δm = δmi−δmo, (6.7)
δU = δQ−δW +δmicpTi−δmocpTo. (6.8)

6.2.1 Filling a rigid bottle with an ideal gas

Since there is no out flow δmo = 0. Recall that

(γ−1)δU = (PδV +V δP),

(γ−1) =
R
cv
.

Since the bottle is rigid we have that δW = 0 and δV = 0. Thus from (6.7) we have that
δmi = δm and from equation (6.8) we have

V δP =
cp

cv
RTi δm+

R
cv

δQ = γRTi δm+
R
cv

δQ,

and hence

V
∫ P2

P1

δP = γRTi

∫ m2

m1

δm+
R
cv

∫ 2

1
δQ,

where we have assumed that the inlet conditions remain constant. Which gives

V (P2−P1) = γRTi(m2−m1)+
R
cv

∫ 2

1
δQ. (6.9)

Using the ideal gas law we have P2V = m2RT2 and P1V = m1RT1 and hence that the above
equation becomes

m2T2−m1T1 = γTi(m2−m1)+
1
cv

∫ 2

1
δQ. (6.10)
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Exercise in Prof. Sivasegaram’s tutorial on un-steady flow: Q 1 An insulated gas cylin-
der of capacity V litres has air at pressure P1 and temperature T1. Air is added from an
air supply line of pressure Pi and temperature Ti.

(a) Find the pressure inside the bottle and the mass of air added when the cylinder tempera-
ture reaches T2.

(b) Find the temperature inside the bottle and the mass of air added when the cylinder pres-
sure reaches P2.

Exercise in Prof. Sivasegaram’s tutorial on un-steady flow: Q 2 If the air in the cylinder
in the previous question was maintained at a constant T through out the filling process what
will be the mass of air added when the pressure reaches P2. Also determine the heat interaction
of the contents of the cylinder and the surroundings.

6.2.2 Emptying a rigid bottle filled with an ideal gas

Since there is no in flow δmi = 0. Since the bottle is rigid δW = 0 and δV = 0. Thus from
(6.7) we have that δmo =−δm and from equation (6.8) we have

V δP = γRTo δm+
R
cv

δQ,

and hence

V (P2−P1) = γRTo(m2−m1)+
R
cv

∫ 2

1
δQ, (6.11)

where we have assumed that the outlet conditions remain constant. Using the ideal gas law
we have P2V = m2RT2 and P1V = m1RT1 and hence that the above equation becomes

m2T2−m1T1 = γTo(m2−m1)+
1
cv

∫ 2

1
δQ. (6.12)

Exercise in Prof. Sivasegaram’s tutorial on un-steady flow: Q 3 An insulated gas cylin-
der of volume V contains helium at a pressure of P1 and a temperature of T1. A leak is
developed in the valve and was discovered when ice started to form on the surface of the
bottle.

(a) Estimate the mass of helium that would have leaked at the time of the discovery of the
leak. (The pressure-density relationship for the gas in the cylinder during the process may
be assumed to satisfy P/ργ = constant.

(b) What do you expect the heat interaction to be?
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Chapter 7
Solutions to selected exercises

7.1 Solutions to selected exercises on Elementary Thermodynamics

Solution to exercise-2.6

Air is a mixture of several different ideal gases. Close to 80% of air is N2 and a close to 20%
of air is O2. Thus we can approximately consider air to be a 4:1 mixture of N2 and O2.

Consider a closed system of air of mass m contained in a volume of V that is at a temperature
of T and a total pressure of P. Since

m = MN2 +MO2,

P = PN2 +PO2,

where MN2 is the mass of N2 in the system MO2 is the mass of O2 in the system. If mN2 is the
mass of a N2 molecule and mO2 is the mass of a O2 molecule we have

PV = (NN2 +NO2)kBT =

(
MN2

mN2

+
MO2

mO2

)
kBT.

We see that

mN2NA = 28×10−3 kg

mO2NA = 32×10−3 kg

where NA = 6.0221×1023 is the Avogadro’s number. Thus we have

PV =

(
MN2

28
+

MO2

32

)
NAkB T ×1023.

Since MN2 = 0.8×M and MO2 = 0.2×M we have

PV = m
(

0.8
28

+
0.2
32

)
RT ×103,

where R = NAkB = 8.3145JK−1. Thus we have that
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PV = mRaT,

where

Ra =

(
0.8
28

+
0.2
32

)
×R×103 = 0.289kJ/kgK.

A more accurate consideration of the percentages gives Ra = 0.287kJ/kgK that agrees quite
well with experimental estimates.

Solution to Exercise-3.2

The heat interaction that occurs in an ideal gas system in the following processes:

(a) quasi-static isochoric process.

In an isochoric process the volume work is zero. Since the process is quasi-static there
can not be any shaft work. Thus the total work done by the system ∆W12 = 0 we then see
that the first law implies that

∆Q12 = ∆U12 +∆W12 =
NkB

(γ−1)
(T2−T1).

(b) isobaric process.

In an isobaric process the pressure is constant. Thus since the process is by definition
quasi-static we have that the volume work done by the system is

∆W12
v =

∫ 2

1
PdV = P(V2−V1).

Since the process is quasi-static there can not be any shaft work. Thus the total work done
by the system is ∆W12 = ∆W12

v. Since the system is an ideal gas the total internal energy
increase is

∆U12 =
NkB

(γ−1)
(T2−T1).

Thus from the first law of thermodynamics we have that the positive heat interaction
during the process is

∆Q12 = ∆U12 +∆W12 =
NkB

(γ−1)
(T2−T1)+P(V2−V1).

=
NkB

(γ−1)
(T2−T1)+NkB(T2−T1)+Ws =

γNkB

(γ−1)
(T2−T1).

(c) isothermal process.

In an iso-thermal process the temperature is constant. Then the internal energy change
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in the process is zero. Thus the first law says that the total energy transferred to the system
due to positive heat interactions must be equal to the work done by the system thus we
must have ∆Q12 = ∆W12. Thus since isothermal processes are by definition quasi-static
and since in a quasi-static process the shaft work must be zero we have

∆Q12 = ∆W12 =
∫ 2

1
PdV =Ws +NkBT

∫ 2

1

1
V

dV = NkBT ln
(

V2

V1

)

Solution to Exercise-3.3

Consider a closed ideal gas system. The heat interaction between the system and surrounding
for the following processes of the system are:

(a) isochoric process with stirring where the temperature of the initial state and the state after
stirring is complete is the same.

Since the process is isochoric the volume work is zero. Since the initial and final tem-
peratures are the same the total internal energy change is zero. Thus the first law says that
the work done on the system due to stirring must be equal to the negative heat interaction
the system had with the system. That is, if the work done on the system due to stirring is
Wstir then the energy lost by the system to the surrounding is equal to Wstir. Hence

∆Q12 =−Wstir.

(b) iso-baric and iso-thermal process with no mixing.

In such a process the internal energy change is zero and the work interaction is zero.
Thus the first law says that the total heat interaction that occurs between the system and
the surrounding must be zero. That is

∆Q12 = 0.

In fact in this process the system does not change state!!! It is the trivial stationary process.

Solution to Exercise-3.4

For a closed and insulated ideal gas system contained in a rigid cylinder the total heat inter-
action during a process is negligible and hence can be considered to be zero. If the system is
mixed using a shaft and the mechanical work involved in the mixing was estimated to be Wm
Joules then the first law of thermodynamics says that the total internal energy increase in the
system must be equal to the shaft work Wm. Thus we have

Wm = ∆U12 =
NkB

(γ−1)
(T2−T1).
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Thus the temperature increase due to mixing is

∆T = (T2−T1) =
(γ−1)

NkB
Wm.

Solution to Exercise-3.5

Since the system is initially in thermal equilibrium PA1 = PB1 = P. From the ideal gas law for
the initial states we find

PV = NkBT,
PV = 2NkBTB1.

This shows that TB1 = T/2. Let PA2 and PB2 be the partial pressures of the gasses after they
mix. Then assuming thermal equilibrium from the ideal gas law for the final state we find

PA22V = NkBT2,

PB22V = 2NkBT2,

P2 = PA2 +PB2 =
3NkBT2

2V
.

Since the system does not interact with the surrounding the first law implies that the internal
energy in the system does not change during the process. Thus we have

NkBT
(

1
(γB−1)

+
1

(γA−1)

)
= NkBT2

(
2

(γB−1)
+

1
(γA−1)

)
.

Which implies that

T2

T
=

(γA−1)+(γB−1)
2(γA−1)+(γB−1)

= α.

The total pressure after mixing is thus P2 =
α3NkBT

2V . Furthermore we see that

P2 =
3NkBT2

2V
=

α3NkBT
2V

= α
3
2

P.

Since we see that 1/2 < α < 1 we have that

1
2

T <T2 < T,

3
4

P <P2 <
3
2

P
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Solution to Exercise-3.6

Since the system the initial equilibrium state is the same as for exercise-3.5 we have

PV = NkBT,
PV = 2NkBTB1,

TB1 =
T
2
.

At the equilibrium state following the switching off of the current through the coil PB2 =
PA2 = P2 and

P2VA2 = NkBTA2,

P2VB2 = 2NkBTB2.

Since the gas A undergoes an adiabatic process we have

P2V γA
A2

= PV γA.

Since the piston is rigid

VA2 +VB2 = 2V.

Since the cylinder is rigid and if we assume no shaft work, the first law implies that the internal
energy increase in the system is equal to the positive heat interaction with the surrounding E.
Thus we have

E = NkBT
(

1
(γB−1)

+
1

(γA−1)

)
−NkB

(
2TB2

(γB−1)
+

TA2

(γA−1)

)
.

Solving the above five equations for the five unknowns (P2,TA2 ,VA2,TB2,VB2) we can now
estimate the work done by the gas B since the work done by gas B is equal to the work done
on the gas A and since gas A undergoes an adiabatic process we have

W B
12 =−W A

12 =
NkB

(γA−1)
(TA2−T ) .

Solution to Exercise-3.7

Initially VA1 = VB1 = V/2 where V is the entire volume of the cylinder. Initially the pressure
on both sides of the cylinder is the same since the system is in equilibrium and the piston is
stationary with no other external forces acting on it.

Let P1 be this initial pressure inside the cylinder. Also since the piston is not insulated
equilibrium also implies that both gases are at the same temperature T1. From the ideal gas
law we find
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P1V
2

= NkBT1,

for both gases. In particular this says that both gases have the same number of molecules.
When you slowly move the piston such that VA2 = 2VB2 we see that VA2 = 2V/3 and VB2 =V/3.
When the system is at equilibrium in this state the temperature of both gases are the same since
the piston is not insulated. Let this temperature be T2. Then from the ideal gas law we have
that

PA2 =
3NkBT2

2V
,

PB2 =
3NkBT2

V
.

Hence the force that has to be applied to keep the piston in place is

F = ap(PB2−PA2) =
3apNkBT2

2V
.

Total internal energy increase inside the cylinder during the process is ∆U12 = ∆UA
12 +∆UB

12
where

∆UA
12 =

NkB(T2−T1)

(γA−1)

∆UB
12 =

NkB(T2−T1)

(γB−1)
.

Since the cylinder is insulated the heat interactions between the gases and the surrounding is
negligible and we can ignore them. Thus from the 1st law of thermodynamics the total work
done on the two gases is equal to −∆W12 = ∆U12. That is the total work done on the system
is

−∆W12 = NkB(T2−T1)

(
1

(γA−1)
+

1
(γB−1)

)
.

Solution to Exercise-3.8

The initial conditions satisfy the same relationships as that of the above solution to exercise-
3.7. Since the left end of the cylinder is uninsulated and if we assume that the process happens
slowly so that all intermediate states are also equilibrium states then the temperature insider
the cylinder is equal to the atmospheric temperature, T1 = Tatm = T2.

Then from the ideal gas law we have that at the final stae

PA2 =
3NkBTatm

2V
,

PB2 =
3NkBTatm

V
.
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Hence the force that has to be applied to keep the piston in place is

F = ap(PB2−PA2) =
3apNkBTatm

2V
.

Total internal energy increase inside the cylinder during the process is ∆U12 =∆UA
12+∆UB

12 =
0 since there is no temperature change inside the cylinder through out the process. The work
done by each of the gases throughout the process is

∆W A
12 = NkBTatm ln

(
4
3

)
∆W B

12 = NkBTatm ln
(

2
3

)
.

Thus the total work heat interaction the system has with the surrounding is

∆Q12 = ∆W12 = NkBTatm ln
(

8
9

)
.

Solution to Exercise-3.9

Denote by (TA2,PA2,VA2) the thermodynamic properties of the end state of gas A and (TB2,PB2,VB2)
the thermodynamic properties of the end state of gas B. From the ideal gas law we have that
in all the above three cases:

PA2VA2

TA2

=
PA1VA1

TA1

= NAkB, (7.1)

PB2VB2

TB2

=
PB1VB1

TB1

= NBkB. (7.2)

We also note from the rigidity of the cylinder that

VA2 +VB2 =VA1 +VB1. (7.3)

Observe that the cylinder is assumed to be fully insulated and rigid and that there is no shaft
work. Therefore throughout the process the total system does not exchange energy or work
with the surroundings. Furthermore the assumption that the volume of the piston is negligible
(or the specific heat capacity of the piston is negligible) implies that the internal energy change
in the piston is negligible. Thus from the principle of conservation of energy we have that the
initial total internal energy U1 = UA1 +UB1 is equal to the final total internal energy U2 =

UA2 +UB2 . Recalling that internal energy is given by U = NkBT
(γ−1) we then have

NAkB

(γA−1)
(TA2−TA1) =−

NBkB

(γB−1)
(TB2−TB1) . (7.4)

We now have four equations in six unknowns and thus need two more equations in order to
be able to solve for the six unknowns VA2,PA2,TA2,VB2 ,PB2,TB2 . It is clear that the equilibrium
state corresponding to the final state of the three different cases described by a), b) and c) in
exercise-3.9 are in general different. Thus we consider each of these cases separately.
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3.9.a The insulation of the piston and the force acting on the piston are both removed sud-
denly.
In this case at equilibrium, since the piston has to be stationary we see that

PA2 = PB2 = P2. (7.5)

Furthermore we also see that at equilibrium the average kinetic energy of the center of mass
motion of all the particles that constitute gas A, gas B and the piston are the same and hence

TA2 = TB2 = T2. (7.6)

Thus we have six equations (7.1)—(7.6) in the six unknowns (TA2,PA2,VA2) and (TB2,PB2,VB2).
We can now solve the six equations (7.1)—(7.4) for the six unknowns (TA2,PA2 ,VA2) and
(TB2,PB2 ,VB2).
From (7.6) and (7.4) we obtain

T2 = TA2 = TB2 =

[
NA

(γA−1)
+

NB

(γB−1)

]−1( NATA1

(γA−1)
+

NBTB1

(γB−1)

)
.

From (7.1) and (7.2) and (7.5) and (7.6) we have

VA2

VB2

=
NA

NB
,

and hence from (7.3) we have

VA2 =
NA

NA +NB
(VA1 +VB1),

VB2 =
NB

NA +NB
(VA1 +VB1).

Finally from (7.2) we have

P2 = PA2 = PB2 =
NBkBTB2

VB2

=
(NA +NB)kBT2

VA1 +VB1

.

Furthermore we can also compute the internal energy changes of the individual gases by

∆UA
12 =UA

2 −UA
1 =

NAkB

(γA−1)
(T2−TA1),

∆UB
12 =UB

2 −UB
1 =

NBkB

(γB−1)
(T2−TB1).

However we do not know enough information to compute the work done by each sub system
since the work depends on the process and not only on the end states. For instance, the work
done by the sub systems when the insulation is removed slowly without changing the force
and then removing the force slowly, is different from the work done when the force is
removed first and the insulation is removed next.
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3.9.b The insulation of the piston is kept in tact and the force acting on the piston is removed
suddenly. In this case at equilibrium, since the piston has to be stationary we see that

PA2 = PB2 = P2. (7.7)

Thus we have five equations (7.1), (7.2), (7.3), (7.4) and (7.7) in the six unknowns
(TA2,PA2 ,VA2) and (TB2,PB2 ,VB2). Hence to be able to solve for these six unknowns we
need one more expression.
Before finding this expression lets find out what we can say about the system with the
information and the expressions we have so far. From (7.1), (7.2) and (7.4) we obtain

1
(γA−1)

(PA2VA2−PA1VA1) =−
1

(γB−1)
(PB2VB2−PB1VB1) ,

and from (7.7)

P2

(
VA2

(γA−1)
+

VB2

(γB−1)

)
=

(
PA1VA1

(γA−1)
+

PB1VB1

(γB−1)

)
.

and

TA2 =
P2VA2

kBNA
, TB2 =

P2VB2

kBNB
.

We find this by noting that each gas undergoes an adiabatic process and assuming that the
removal of the force was done in such a way that the intermediate states of the process are
guaranteed to be equilibrium states and hence that

P2V γA
A2

= PA1V
γA
A1
. (7.8)

or equivalently

P2V γB
B2

= PB1V
γB
B1
. (7.9)

We can now solve the six equations (7.1), (7.2), (7.3), (7.4), (7.7) and (7.8) (or (7.9)) for
the six unknowns (TA2,PA2,VA2) and (TB2,PB2,VB2).
Substituting for VA2 and VB2 from (7.8) and (7.9) and (7.7) we end up with the following
nonlinear expression for PA2 = P2.

P2

(PA1V
γA
A1

P2

) 1
γA 1
(γA−1)

+

(
PB1V

γB
B1

P2

) 1
γB 1
(γB−1)

=

(
PA1VA1

(γA−1)
+

PB1VB1

(γB−1)

)
.

Once you solve this for P2, we can obtain VA2 from (7.8) and VB2 from (7.9), and finally TA2

and TB2 from (7.1) and (7.2) respectively.
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Now we can also compute the internal energy changes of the individual gases by

∆UA
12 =UA

2 −UA
1 =

NAkB

(γA−1)
(T2−TA1),

∆UB
12 =UB

2 −UB
1 =

NBkB

(γB−1)
(T2−TB1).

Furthermore since the gasses undergo an adiabatic process we also have that the work done
by the gasses are given by

∆W A
12 =−∆UA

12 =−
NAkB

(γA−1)
(T2−TA1),

∆W B
12 =−∆UB

12 =−
NBkB

(γB−1)
(T2−TB1).

3.9.c A door in the piston is opened slowly.
In this case at equilibrium,

TA2 = TB2 = T2. (7.10)

Thus we have five equations (7.1), (7.2), (7.3), (7.4) and (7.10) in the six unknowns
(TA2,PA2,VA2) and (TB2,PB2 ,VB2). Hence to be able to solve for these six unknowns we
need one more expression. We find this by noting that each gas at equilibrium occupies the
entire volume of the cylinder. That is

VA2 =VB2 =VA1 +VB1. (7.11)

From (7.10) and (7.4) we obtain

T2 =

[
NA

(γA−1)
+

NB

(γB−1)

]−1( NATA1

(γA−1)
+

NBTB1

(γB−1)

)
.

From (7.1) and (7.2) we thus have

PA2 =
NAkBT2

VA1 +VB1

,

PB2 =
NBkBT2

VA1 +VB1

,

P2 = PA2 +PB2 = kBT2
NA +NB

VA1 +VB1

,

PA2

PB2

=
NA

NB
.

Now we can also compute the internal energy changes of the individual gases by

∆UA
12 =UA

2 −UA
1 =

NAkB

(γA−1)
(T2−TA1),

∆UB
12 =UB

2 −UB
1 =

NBkB

(γB−1)
(T2−TB1).
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Solution to Exercise-3.10

Fig. 7.1 The P−V curve of the process discussed in exercise-3.10.

Note that the given data are P1,V1,TH ,V2,TC In order to maintain the temperature at TH
during the part of the process from 1→ 2 one needs to maintain the internal energy at a
constant thus from the first law we see that the energy that is coming in from the hot plate to
the system through the bottom of the cylinder must be expended as work. That is the energy
absorbed by the system ∆Q12 = QH during this part must be equal to the work done by the
system during the process ∆W12. Thus the volume V must increase. Since the temperature
remains constant through this part of the process the pressure and volume must satisfy PV =
mRaTH during the process 1→ 2. Then assuming that the process is quasi-static and there is
no shaft work we have

QH = ∆W12 =
∫ 2

1
PdV =

∫ 2

1

mRaTH

V
dV = mRaTH ln

(
V2

V1

)
.

The process from 2→ 3 that occurs on the sand pit is an adiabatic process. Thus from the first
law of thermodynamics we have that the work done by the system, ∆W23, during this process
is equal to the internal energy decrease. Thus

∆W23 =−∆U23 =
mRa

(γ−1)
(TH−TC) .

During this part of the process since the internal energy is decreasing the temperature must
drop during this part of the process. We allow this expansion to occur until the temperature
drops to TC at which point we transfer the cylinder to a cold plate at temperature TC. During
the process 3→ 4 on the cold plate we need to maintain the temperature at a constant value
TC. From the argument made before we see that we need to compress the gas. Since this part
of the process is iso-thermal and the gas is an ideal gas the total internal energy change during
this part of the process is zero and thus from the first law of thermodynamics we have that
the energy lost by the system, QC = −∆Q34 is equal to the work done on the system −W34.
Assuming this part of the process is quasi-static we then have

QC =−∆Q34 =−∆W34 =−
∫ 4

3
PdV =−

∫ 4

3

mRaTC

V
dV =−mRaTC ln

(
V4

V3

)
= mRaTC ln

(
V3

V4

)
.
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Note that in order to compute QC we need to know V3, and V4.
Now for the part of the process, from 2→ 3, on the sand pit since there are no other inter-

actions other than work the process is adiabatic. Assuming that the process is quasi-static we
see that PV γ is a constant during this part of the process. On the other hand from the ideal gas
law we have P2V2/TH = P3V3/TC and hence

P2

P3
=

(
V3

V2

)γ

=

(
V3TH

V2TC

)
and hence that

V3 =V2

(
TH

TC

) 1
γ−1

.

Similarly for the last part of the process, from 4→ 1, P1V γ

1 = P4V γ

4 and P1V1/TH = P4V4/TC
and hence

P1

P4
=

(
V4

V1

)γ

=

(
V4TH

V1TC

)
and hence that

V4 =V1

(
TH

TC

) 1
γ−1

.

Note that this shows that
V3

V4
=

V2

V1
.

Since the process is adiabatic the work done on the system −∆W41 is equal to the internal
energy increase of the system. That is

∆W41 =−
mRa

(γ−1)
(TH−TC) .

Taking Prof. Sivasegaram’s advice we will summarize these results in the two tables below.

State P V T

1 P1 V1 TH

2 — V2 TH

3 — V2

(
TH
TC

) 1
γ−1

TC

4 — V1

(
TH
TC

) 1
γ−1

TC

Process ∆Qi j ∆Wi j

1→ 2 mRaTH ln
(

V2
V1

)
mRaTH ln

(
V2
V1

)
2→ 3 0 mRa

(γ−1) (TH−TC)

3→ 4 −mRaTC ln
(

V3
V4

)
−mRaTC ln

(
V3
V4

)
4→ 1 0 − mRa

(γ−1) (TH−TC)
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The efficiency of the engine is

η =

(
∆W12 +∆W23 +∆W34 +∆W41

∆Q12

)
×100% =

(
∆Q12 +∆Q34

∆Q12

)
×100%

=

(
1+

∆Q34

∆Q12

)
×100% =

1+
−mRaTC ln

(
V3
V4

)
mRaTH ln

(
V2
V1

)
×100%

=

(
1− TC

TH

)
×100

Solution to Exercise-3.11 – [Otto standard cycle]:

Consider the quasi-static adiabatic compression process from 1→ 2. Assuming that air be-
haves like an ideal gas we have T1 = P1V1/mRa and since P1V γ

1 = P2V γ

2 = P2V γ

3 , that

P2 =
P1V γ

1

V γ

3
,

P2V2 =
P1V γ

1

V γ−1
3

,

T2 =
P2V2

mRa
=

P1V γ

1

mRaV γ−1
3

.

The volume work done by the system, ∆W12 during this part of the process is thus

∆W12 =−
1

γ−1
(P2V2−P1V1) =

P1V1

γ−1

(
1−
(

V1

V3

)γ−1
)

Consider the constant volume process from 2→ 3. Since air is assumed to be an ideal gas
the ideal gas law gives:

T3 =
P3V3

mRa
.

Since the volume is constant the pressure can increase only if the temperature increases. That
is the internal energy must increase during this process. Since there is no volume change the
volume work is zero. Thus the first law says that the internal energy increase in this part
of the process must equal the positive heat interaction ∆Q23 that the system has with the
surrounding. Since we assume air is an ideal gas we then have that

∆Q23 =U3−U2 =
mRa

(γ−1)
(T3−T2) =

1
(γ−1)

(P3V3−P2V2) =
P3V3

(γ−1)

(
1−

P1V γ

1

P3V γ

3

)
.

Consider the quasi-static adiabatic expansion process from 3→ 4. Assuming that air be-
haves like an ideal gas we have since P3V γ

3 = P4V γ

4 = P4V γ

1 , that
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P4 =
P3V γ

3

V γ

1
,

P4V4 =
P3V γ

3

V γ−1
1

,

T4 =
P4V4

mRa
=

P3V γ

3

mRaV γ−1
1

.

The volume work done by the system, ∆W34 during this part of the process is thus

∆W34 =−
1

γ−1
(P4V4−P3V3) =

P3V3

γ−1

(
1−
(

V3

V1

)γ−1
)
.

Consider the constant volume process from 4→ 1. Since the volume is constant the pressure
can decrease only if the temperature decreases. That is the internal energy must decrease
during this process. Since there is no volume change the volume work is zero. Thus the first
law says that the internal energy decrease in this part of the process must equal the negative
heat interaction −∆Q41 that the system has with the surrounding. Since we assume air is an
ideal gas we then have that

∆Q41 =U1−U4 =
mRa

(γ−1)
(T1−T4) =

1
(γ−1)

(P1V1−P4V4) =
P1V1

(γ−1)

(
1−

P3V γ

3

P1V γ

1

)
.

We will summarize these results in the two tables below.

State P V T

1 P1 V1
P1V1
mRa

2 P1V γ

1
V γ

3
V3

P1V γ

1

mRaV γ−1
3

3 P3 V3
P3V3
mRa

4 P3V γ

3
V γ

1
V1

P3V γ

3

mRaV γ−1
1

Process ∆Qi j ∆Wi j

1→ 2 0 P1V1
γ−1

(
1−
(

V1
V3

)γ−1
)

2→ 3 P3V3
(γ−1)

(
1− P1V γ

1
P3V γ

3

)
0

3→ 4 0 P3V3
γ−1

(
1−
(

V3
V1

)γ−1
)

4→ 1 P1V1
(γ−1)

(
1− P3V γ

3
P1V γ

1

)
0

Note that for one entire cycle of the process the first law says that

0 = (∆Q23 +∆Q41)− (∆W12 +∆W34),

and hence that
(∆Q23 +∆Q41) = (∆W12 +∆W34).

The efficiency of the engine is
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η =
∆W12 +∆W34

∆Q23
×100% =

(
(∆Q23 +∆Q41)

∆Q23

)
×100% =

(
1+

∆Q41

∆Q23

)
×100%

=

1+

P1V1
(γ−1)

(
1− P3V γ

3
P1V γ

1

)
P3V3
(γ−1)

(
1− P1V γ

1
P3V γ

3

)
×100% =

(
1−
(

V3

V1

)(γ−1)
)
×100%.

Solution to Exercise-3.13

Since the cylinder is insulated and rigid the only interaction the system has with the surround-
ing is the work due to stirring. Thus the fist law tells us that ∆U12 = −∆W12. Thus the work
done on the system due to stirring is

∆W12 =−∆U12 =
NkB

(γ−1)
(T2−T1) =

1
(γ−1)

(P2−P1)V1.

Solution to Exercise-3.14

Let xi = (Pi,Vi,Ti,Ui) denote the ith equilibrium state of the system during the described
process. Iso-thermal or iso-baric process means that intermediate states are also equilibrium
states. Thus iso-thermal processes or iso-baric processes are quasi-static process.

Thus for the iso-thermal part of the process

∆W12 =
∫ 2

1
PdV = P1V1

∫ 2

1

1
V

dV = P1V1 ln
(

V2

V1

)
< 0,

∆U12 = (U2−U1) = 0.

and for the iso-baric part

∆W23 =
∫ 3

2
PdV = P2

∫ 3

2
dV = P2(V3−V2)< 0,

∆U23 = (U3−U2) =
NkB

(γ−1)
(T3−T2) =

1
(γ−1)

P2(V3−V2).

Thus the heat interaction during each stage is

∆Q12 = ∆U12 +∆W12 = P1V1 ln
(

V2

V1

)
< 0

∆Q32 = ∆U23 +∆W23 =
1

(γ−1)
P2(V3−V2)+P2(V3−V2) =

γ

(γ−1)
P2(V3−V2)< 0.
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Solution to Exercise-3.15

Assume that the process occurs sufficiently slowly so that all the intermediate states of the
system are also in equilibrium. Consider an intermediate state of the system described by the
variables (P,V,T ) at which the spring is compressed by x. Consider an infinitesimal change in
the system that results in an equilibrium state (P+ δP,V + δV,T + δT ) and the spring to be
compressed by x+δx. Then the incremental work done by the gas is

δW = PδV =

(
Patm +

kx
A

)
Aδx = (APatm + kx)δx.

When the system changes from (P1,V1,T1) to (P2,V2,T2) the spring is compressed from x1 = 0
to x2 = (V2−V1)/A. Thus we find the work done by the system to be

∆W12 =
∫ x2

x1

(APatm + kx)dx = Patm(V2−V1)+
k

2A2 (V2−V1)
2.

The internal energy increase in the system is

∆U12 =
1

(γ−1)
(P2V2−P1V1).

Thus the total heat interaction between the gas and the surrounding is

∆Q12 = ∆U12 +∆W12 =
1

(γ−1)
(P2V2−P1V1)+Patm(V2−V1)+

k
2A2 (V2−V1)

2.

Solution to Exercise-3.17

Since the process is iso-baric and if we assume the process to be quasi-static then

∆Q12 =
∫ T2

T1

cpdT =
∫ T2

T1

(c0 + c1T + c2T 2 + c3T 3)dT

=
(

c0(T2−T1)+
c1

2
(T2−T1)

2 +
c1

3
(T2−T1)

3 +
c1

4
(T2−T1)

4)
)
,

and

∆W12 =
∫ V2

V1

PdV = P1(V2−V1).

Thus from the first law we have that the increase in the internal energy of the system is

∆U12 = ∆Q12−∆W12

=
(

c0(T2−T1)+
c1

2
(T2−T1)

2 +
c2

3
(T2−T1)

3 +
c3

4
(T2−T1)

4
)
−P1(V2−V1).
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Solution to Exercise-3.18

Since the process satisfies PV n = constant we see that

P2 = P1

(
V1

V2

)n

.

Since by definition polytropic processes are quasi-static we have that the work done by the
system is

∆W12 =−
1

(n−1)
(P2V2−P1V1)

=− P1V1

(n−1)

((
V1

V2

)(n−1)

−1

)

Consider the following process x1 = (P1,V1)→ x0 = (P2,V1)→ x2 = (P2,V2) where the first
is a quasi-static iso-choric process and the second is a quasi-static iso-baric process. Thus

∆U10 = ∆Q10 =
∫ T0

T1

cv(T )dT,

∆U02 = ∆Q02−∆W02 =
∫ T2

T0

cp(T )dT −P2(V2−V1),

where T1 = τ(P1,V1), T0 = τ(P2,V1), and T2 = τ(P2,V2). Hence we have

∆U12 = ∆U10 +∆U02 =−P2(V2−V1)+
∫ T0

T1

cv(T )dT +
∫ T2

T0

cp(T )dT,

and thus that the heat interaction during a process is given by

∆Q12 = ∆U12 +∆W12

=−P2(V2−V1)+
∫ T0

T1

cv(T )dT +
∫ T2

T0

cp(T )dT − P1V1

(n−1)

((
V1

V2

)(n−1)

−1

)
,

where T1 = τ(P1,V1), T0 = τ(P2,V1), and T2 = τ(P2,V2).

Solution to Exercise-3.23: [Kelvin-Planck implies Caratheodory]

Let x be a given equilibrium state of a given simple thermodynamic system and Nx be any
neighborhood of x .

If Kelvin-Planck is true but the Caratheodory statement is false then every equilibrium state
y ∈Nx can be adiabatically and quasi-statically reached from x. Let y ∈Nx be such that x
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Fig. 7.2 A small neighborhood Nx about x and a pure heat interaction process through x.

can be reached from y by only a positive heat interaction (purely heat addition) process. Such
points exist by assumption. Refer to figure-7.2 for an illustration. Then if we consider the
process of going from y to x by pure positive heat interaction and then coming back to y from
x adiabatically results in a cyclic process that can convert a given amount of energy (absorbed
by the system due to the pure positive heat interaction) entirely into work (see figure-7.2) and
hence is a contradiction of the Kelvin-Planck statement. Thus if Kelvin-Planck is true then
there must exist equilibrium states near x that can not be adiabatically reached from x. This
proves that the Kelvin-Planck statement implies that in any neighborhood of x there exists
equilibrium states near x that can not be adiabatically reached from x.

Let us consider the case if Kelvin-Planck is true and further that x can be reached from any
state near x in an adiabatic process. Let z∈Nx be a state that can be reached from x by a only a
positive heat interaction process. Then one can reach z from x by only positive heat interaction
and then come back to x in an adiabatic process that results in a cyclic process that can convert
a given amount of energy (absorbed as a result of the pure positive heat interaction) entirely
into work (see figure-7.2) and is thus a contradiction of the Kelvin-Planck statement. Thus if
the Kelvin-Planck statement is true then there must exist states z in any neighborhood of x
from which you can not reach x in an adiabatic process. Thus proving that the Kelvin-Planck
statement implies the Caratheodory statement.

Solution to Exercise-3.27: [Entropy of an ideal gas]

Since entropy S is a property of the thermodynamic equilibrium state the entropy change that
occurs in any ideal gas process from state (P1,V1,T1) to (P2,V2,T2) is the same. Since we know
how to compute the entropy change that occurs in a reversible process, cr, using ∆S =

∫
cr

δQ
T ,

we can estimate the entropy difference between the two states by constructing such a process.
For any reversible ideal gas process we have

dS =
1
T

δQ =
1
T
(dU +δW ) =

1
T
(dU +PdV ).

Since the internal energy U of an ideal gas depends only on the temperature T we see that
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dU =
NkB

(γ−1)
dT.

Furthermore from the ideal gas law we have that P = NkBT/V and thus we have that

dS =
1
T

NkB

(γ−1)
dT +NkB

1
V

dV

Integrating the above equation over the reversible process, cr, we see that

S(V,T ) =
NkB

(γ−1)
ln(T )+NkB ln(V )+a, (7.12)

where a is an integration constant and finally we have

S(V,T ) = NkB

(
ln(V )+

1
γ−1

ln(T )
)
+a.

Solution to Exercise-3.29

Since the piston is uninsulated and free to move the initial temperatures of both gases must be
the same. Denote by (T,Pi,VA) the thermodynamic properties of the initial state of gas A and
(T,Pi,VB) the thermodynamic properties of the initial state of gas B. Denote by (T,PA2,V )
the thermodynamic properties of the end state of gas A and (T,PB2,V ) the thermodynamic
properties of the end state of gas B where V =VA +VB.

Let ∆SA and ∆SB be the entropy difference between the initial and final state of gas A and
gas B. From the entropy for an ideal gas given by

S(V,T ) = NkB

(
ln(V )+

1
γ−1

ln(T )
)
+a,

we see that

∆SA = NAkB

(
ln
(

VA +VB

VA

)
+

1
γA−1

ln
(

Tf

TA

))
∆SB = NBkB

(
ln
(

VA +VB

VB

)
+

1
γB−1

ln
(

Tf

TB

))

Thus the entropy difference between the initially separated state and the mixed state is

∆S = ∆SA +∆SB,

= NAkB

(
ln
(

VA +VB

VA

)
+

1
γA−1

ln
(

Tf

TA

))
+NBkB

(
ln
(

VA +VB

VB

)
+

1
γB−1

ln
(

Tf

TB

))
,

= kB

(
NA ln

(
VA +VB

VA

)
+NB ln

(
VA +VB

VB

))
+ kB

(
NA

γA−1
ln
(

Tf

TA

)
+

NB

γB−1
ln
(

Tf

TB

))
.
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where from the solution to Exercise-3.9 we have seen that

Tf =

[
NA

(γA−1)
+

NB

(γB−1)

]−1( NATA

(γA−1)
+

NBTB

(γB−1)

)
.

If this ∆S is greater than zero then the adiabatic process must be necessarily irreversible.
We should be able to verify that this is true. The first two terms in the expression for ∆S is
positive while one of the last two terms is negative. Proving that the sum of the last two terms
is positive in this general setting is algebraically hard. However, below we will show that this
can be easily verified for the special case where gas A and gas B is the same and have the same
number of particles.

If both gases are of the same type then we have

Tf =
(NATA +NBTB)

(NA +NB)
,

Let rn = NB/NA, rT = TB/TA then it can be shown that the last two terms of the expression for
∆S becomes

kB

γ−1

(
NA ln

(
(NATA +NBTB)

TA (NA +NB)

)
+NB ln

(
(NATA +NBTB)

TB (NA +NB)

))
=

NAkB

γ−1

(
ln
(
(1+ rnrT )

(1+ rn)

)
+ rn ln

(
(1+ rnrT )

rT (1+ rn)

))
=

NAkB

γ−1
ln

(
1

rrn
T

(
1+ rnrT

1+ rn

)1+rn
)
.

Now if both sides initially had the same number of particles then rn = 1 and thus

kB

γ−1

(
NA ln

(
(NATA +NBTB)

TA (NA +NB)

)
+NB ln

(
(NATA +NBTB)

TB (NA +NB)

))
=

NAkB

γ−1
ln

(
1
rT

(
1+ rT

2

)2
)

=
2NAkB

γ−1
ln


(

1√
rT
+
√

rT

)
2

> 0.

Solution to Exercise-3.30

Let us assume that the specific heat capacity of the metal block and the temperature of the
water remains constant (since the water mass is assumed very large the temperature change is
very small and this assumption is valid).

We have seen that the maximum efficiency that one can obtain is with a reversible engine.
Thus the maximum work that can be extracted from this hot block and the cold reservoir
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is given by a reversible engine running between the block and the reservoir at a constant
temperature Tc. We will construct such a cycle as follows:

Let the block and the reservoir be connected by a reversible engine such that in one of its
complete cycles only an incremental change occurs in the block. That is in one complete cycle
let δQH b be the total energy absorbed by the system due to its positive heat interaction and
let δQCw be the total energy lost to the pool of water due to negative heat interaction. Let δT
be the incremental temperature increase of the block at the end of one cycle of the reversible
engine.

Then by the First Law we have that the incremental work done in one complete cycle of the
process is

δW = δQH b−δQCw.

The incremental energy lost by the block to the cyclic system at a particular stage is−mcbdT 1.
Thus since the total energy added to the system during one complete cycle due to its interaction
with the block is equal to the energy lost by the block we have

δQH b =−mcbδT.

In order to find the incremental negative heat interaction, δQCw, the engine has we proceed
as follows. Observe that since the cycle is reversible, we can use ∆S =

∫
δQ
T to compute the

Entropy change in the reversible system at each stage and use the fact that the total entropy
change in one cycle of the process is zero. Thus we have that

0 =
δQH b

T
− δQCw

TC
=
−mcbδT

T
− δQCb

TC
.

Which gives us that the incremental energy absorbed by the pool of water in one complete
cycle of the process is

δQCw =−mcbTC
δT
T

.

Thus the incremental work done in one cycle of the reversible process is

δW =−mcbdT +mcbTC
δT
T

.

Thus the maximum extractable work is

Wmax =
∫

δW =−
∫ TC

Ti

mcbdT +
∫ TC

Ti

mcbTC
dT
T

= mcb

(
(Ti−TC)−TC ln

(
Ti

TC

))
.

Note that since TC < Ti we see that

Wmax < mcb (Ti−TC) .

1 This is negative because we have considered δT to be the temperature increase in the block in the
course of one complete cycle of the process
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Fig. 7.3 An arbitrary system undergoing a quasi-static cyclic process while interacting with a Carnot
Engine at every intermediate stage of the process.

Solution to Exercise-3.32:[Proof that Kelvin’s version of the second law
implies the Clausius inequality]

Consider an arbitrary system undergoing an arbitrary quasi-static cyclic process. Consider
an incremental (small) part of this process. During this incremental part of the process, let
δQ be the heat interaction the system has with the surrounding, δW be the work done by
the system, and let the temperature of the system at this part of the process be T . Since it
does not matter how the system interacts with the surrounding we may assume without loss
of generality that the δQ amount of energy interaction the system has with the surrounding
is given by a Carnot engine operating at a constant temperature T0 as shown in figure-7.3.
Let the corresponding energy absorbed by the Carnot engine due to its heat interaction with
a reservoir at a temperature T0 be δQ0 and let the corresponding work done by the Carnot
engine be δW0. We will assume that when the system in the Carnot engine undergoes one
cyclic process our original system makes the incremental transition defined above. We have
shown that for the Carnot engine δQ

T = δQ0
T0

. Furthermore from the first law for the composite
system of the arbitrary system plus the Carnot engine we have∮

δQ0 =
∮
(δW0 +δW ).

But the second law says that a given amount of energy absorbed by a system through a pos-
itive heat interaction can not be converted entirely to its mechanical equivalent work thus
necessarily

∮
δQ0 =

∮
(δW0 +δW )≤ 0. Thus∮

δQ
T

=
∮

δQ0

T0
=

1
T0

∮
δQ0 ≤ 0.

Now if the process is reversible δQ
T = dS and hence

∮
δQ
T = 0. Hence if the process is reversible

the equality holds.
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Solution to Exercise-3.33

Assume that the specific heat capacity of the metal block and the temperature of the water
remains constant (since the water mass is assumed very large the temperature change is very
small and this assumption is valid). Recall that the incremental internal energy increase in a
solid is equal to mcbδT where δT is the incremental temperature increase in the solid.

When the block is directly immersed in the water, since the water mass is assumed to be
very large it is reasonable to assume that the water temperature will remain constant at Tc and
that the block will eventually cool to a temperature of Tc.

Since Entropy is only a function of the state we can compute the entropy change in the block
by constructing a reversible process that brings the block from a temperature Ti to a temper-
ature Tc, as done in the solution to exercise-3.30, by connecting a reversible cyclic process
between the block and the reservoir. Thus the Entropy increase in the block is

∆Sb =
∫ 2

1

δQb

T
=
∫ Tc

Ti

mcbdT
T

= mcb ln
(

Tc

Ti

)
=−mcb ln

(
Ti

Tc

)
.

Note that since Tc < Ti this quantity is negative.
The energy absorbed by the reservoir, due to heat interaction with the block may not be

a reversible process. However the Clausius inequality implies that the entropy increase in
the reservoir, ∆Sw, must be greater than or equal to

∫
δQw

T over the process of energy trans-
fer through heat interaction the reservoir has with the block. Since the energy transfer to
the reservoir is equal to the energy lost by the block due to heat interactions we see that
δQw = −δQb = −mcb dT . Thus, as pointed out before, the Clausius inequality implies that
the entropy increase in the reservoir must satisfy

∆Sw ≥
∫ 2

1

δQw

Tc
=−

∫ Tc

Ti

mcbdT
Tc

= mcb

(
Ti−Tc

Tc

)
.

Thus the total Entropy increase in the closed system consisting of the block+pool of water
must satisfy

∆S = ∆Sb +∆Sw ≥ mcb

(
− ln

(
Ti

Tc

)
+

(
Ti−Tc

Tc

))
=

mcb

Tc

(
(Ti−Tc)−Tc ln

(
Ti

Tc

))
Since Tc < Ti we can show that the right hand side is greater than zero. That is ∆S> 0. Thus the
total entropy of the system where the block is immersed in the water is greater than the entropy
of the block+water with the block sitting outside the water. Consider the reservoir and the
block as one single system. This composite system is a closed system and it does not interact
with the surrounding in any way and hence in particular the entire process of the composite
system is an adiabatic process. Thus from the property of the entropy proven in Exercise-3.25
we see that this entire process is irreversible. Confirming our empirical observations.
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7.2 Solutions to exercises on steady flow processes

Solution to exercise in Prof. Sivasegaram’s tutorial on steady flow: Q 1 Since the flow though
the nozzle is adiabatic δQ ≡ 0. Inlet conditions Ti,Pi are given. The entry and exit velocities
ci and co are given. Since the device is a nozzle there is no shaft work and the control volume
does not change and hence δW ≡ 0. Assuming air to behave as an ideal gas from equation
(6.6) we have that

To = Ti +
1

2cp
(c2

i − c2
o).

Solution to exercise in Prof. Sivasegaram’s tutorial on steady flow: Q 3 Let Ti,Pi be the
inlet conditions and let To,Po be the outlet conditions of the pipe and they are given. The
mass flow rate ṁ and the pipe cross section A is given. Let the inlet velocity be ci and the
outlet velocity be vo. If vi and vo denote the inlet and outlet specific volumes we have

ci =
ṁvi

A
=

ṁRTi

APi
,

co =
ṁvo

A
=

ṁRTo

APo
.

Since the control volume of interest does not change δW ≡ 0 and thus from (6.6) we have

−δQ = ṁcp(Ti−To)+
ṁ
2
(c2

i − c2
o).

Solution to exercise in Prof. Sivasegaram’s tutorial on steady flow: Q 4 There are two in-
puts and one output of the system. Denote the inlet hot air properties by Th,Ph and the flow
rate by ṁh while the cool air properties by Tc,Pc and the flow rate by ṁc. Denote by Tm,Pm
the mixture properties.

(a) In the first case all data mentioned above except ṁc is given and you are asked to find the
cold air flow rate ṁc.
Assuming that the kinetic energies of the inlet and outlet flows are negligible and that the
heat interactions are negligible due to insulation(that is δQ≡ 0) the equations (6.1)–(6.4)
gives (inlet enthalpy-outlet enthalpy)=0 and thus.

0 = ṁchc + ṁhhh− (ṁc + ṁh)hm,

Assuming air to behave close to an ideal gas we can use h = cpT and hence the above
equation becomes

0 = ṁccpTc + ṁhcpTh− cp(ṁc + ṁh)Tm

Which gives

ṁc = ṁh
(Th−Tm)

(Tm−Tc)

(b) In the next part you are given the inlet and outlet velocities of the flow and they are of
non-negligible magnitude. Furthermore the flow rates are assumed to be the flow rates
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obtained in the previous section. What is unknown now is the exit mixture temperature Tm.
Applying the energy balance as before we have

0 = ṁccpTc + ṁhcpTh− cp(ṁc + ṁh)Tm +
ṁc

2
c2

c +
ṁh

2
c2

h−
ṁc + ṁh

2
c2

m.

The only unknown in this expression is Tm and it can be solved for.

Tm =
1

cp(ṁc + ṁh)

(
ṁccpTc + ṁhcpTh +

ṁc

2
c2

c +
ṁh

2
c2

h−
ṁc + ṁh

2
c2

m

)
.

Solution to exercise in Prof. Sivasegaram’s tutorial on steady flow: Q 5 Let the inlet wet
steam conditions be denoted by Tw,Pw,xw and the outlet dry steam conditions be denoted by
Td,Pd,xd and the condensed water conditions be Tc,Pc. Lets the respective mass flow rates be
denoted by ṁw, ṁd, ṁc.

Since the separator volume does not change and there is no shaft work δW ≡ 0. Assume
that the heat interactions are negligible and hence δQ ≡ 0. Assume that the kinetic energies
of the flows are negligible the equations (6.1)–(6.4) give

ṁw = ṁd + ṁc,

0 = ṁwhw− ṁdhd− ṁchc

(a) Let the pressures of all the flows be the same Pw = Pc = Pd = P. Let the saturated liquid
and vapor enthalpies corresponding to a pressure P be h f and hg respectively and can be
found from the steam tables. Then we have

hw = xwh f +(1− xw)h f ,

hd = xdh f +(1− xd)h f ,

hc = h f

where we have assumed that the condensed water is at saturated liquid conditions. Then
plugging these in the above mass and energy balance equations we have

0 = ṁw(xwhg +(1− xw)h f )− (ṁw− ṁc)(xdhg +(1− xd)h f )− ṁch f

The only unknown in this expression is ṁc and can be solved for to give.

(−ṁc)(xdhg +(1− xd)h f )+ ṁch f = ṁw(xwhg +(1− xw)h f )− (ṁw)(xdhg +(1− xd)h f )

−ṁcxd(hg−h f ) = ṁw(xw− xd)(hg−h f ).

And finally

ṁc = ṁw

(
xd− xw

xd

)
.

Note that you only need the dryness fraction data to solve this.
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(b) On the other hand if the exit water conditions were saturated conditions an the exit water
is at atmospheric conditions then Pw = Pd = P. Denote as before the saturated liquid and
vapor enthalpies corresponding to a pressure P as h f and hg respectively. Let Pc = P0 the
atmospheric pressure and let h f 0 be the saturated liquid enthalpy at atmospheric pressure
then we have from the mass balance and energy balance

0 = ṁw(xwhg +(1− xw)h f )− (ṁw− ṁc)(xdhg +(1− xd)h f )− ṁch f 0.

Simplifying as before

(−ṁc)(xdhg +(1− xd)h f )+ ṁch f 0 = ṁw(xwhg +(1− xw)h f )− (ṁw)(xdhg +(1− xd)h f )

−ṁcxd(hg−h f )+ ṁc(h f 0−h f ) = ṁw(xw− xd)(hg−h f ).

and finally

ṁc = ṁw

(
(xd− xw)(hg−h f )

(h f −h f 0)+ xd(hg−h f )

)
.

Solution to exercise in Prof. Sivasegaram’s tutorial on steady flow: Q 7 Denote inlet con-
ditions of steam as Ts,Ps,xs and let the conditions of the condensate that is leaving be Tc,Pc.
Assume that Pc =Ps =P since in a typical condenser the pressure differences between the inlet
and outlet are small. For an optimal condenser design the condensate should be at saturated
liquid conditions. The mass flow rate of steam is denoted by ṁs and denote the cooling water
supply rate by ṁw. Let the inlet cooling water conditions be Ti,Pi and the outlet cooling water
conditions be To,Po.

Denote by hs,hc,hi,ho be the specific enthalpies of the steam, condensate, inlet cooling
water, and the outlet cooling water respectively.

The two flows do not mix in the condenser. Assuming that the kinetic energy of the flows are
negligible and the condenser is insulated we have from the energy balance

0 = ṁshs + ṁwhi− (ṁshc + ṁwho).

From which we have
0 = ṁs(hs−hc)+ ṁw(hi−ho).

Thus

ṁw = ṁs

(
hs−hc

ho−hi

)
.

(a) Consider the problem of finding the coolant supply rate ṁw given all inlet and outlet
conditions and the steam mass flow rate ṁs.
To find the solution what one needs is to find the specific enthalpies. Since all inlet and
outlet conditions are given this can be done. From the steam tables we can obtain the
specific enthalpy of saturated liquid and vapor at P = .1 bar. Denote them by h f P and hgP
respectively. (from steam tables h f P = 192 kJ and hgP = 2584 kJ ) Then
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hs = xshgP +(1− xs)h f P = (0.85×2584+(1−0.85)×192)kJ = 2225.2 kJ.

Since for an optimum condenser design the condense should be in saturated liquid condi-
tions and there is no appreciable pressure loss

hc = h f P = 192 kJ.

Recall that we can approximate the sub cooled enthalpies at a temperature T by the sat-
urated liquid enthalpies at the saturation temperature of Ts = T . Let the saturation pres-
sure corresponding to a saturation temperature of T be PTi . Then we have hi ≈ h f PTi

and
ho ≈ h f PTo

. (From steam tables for a saturation temperature of Ti = 25oC the pressure
should be PTi = 0.03166 bar and hi ≈ h f PTi

= 104.8kJ and for a saturation temperature
of To = 33oC the pressure should be PTo = 0.05036 bar and ho ≈ h f PTo

= 138.2kJ — note
that you need interpolations to get PTo and h f PTo

). Thus

ṁw ≈ 30×
(

2225.2−192
138.2−104.8

)
kg/s = 1826 kg/s.

(b) Consider the problem of finding the exit cooling water conditions if the desired cooling
water rate is ṁw = 80 kg/s given and all inlet conditions are given.
In this case since the outlet cooling water conditions are not known ho is not known and
this is the only unknown hence from

1906≈ 30×
(

2225.2−192
ho−104.8

)
.

we have that ho ≈ 136.8 kJ. Reversing the process we did before to find ho we find from
steam tables that this values is approximately equal to the saturated liquid enthalpy cor-
responding to the saturation temperature of 32.7o C. Thus the exit temperature of the
coolant is close to 32.7o C if the coolant flow rate is increased 80 kg/s.

Solution to exercise in Prof. Sivasegaram’s tutorial on steady flow: Q 8 Hellium enters a
gas turbine. The entry conditions Ti,Pi and ci are given. The exit conditions To,Po, and co
are also given. The mass flow rate ṁ f l is given. Assuming that the heat interaction with the
surrounding is negligible we have from equation (6.6)

Ẇ = ṁ f lcp(Ti−To)+
ṁ f l

2
(c2

i − c2
o).

7.3 Solutions to exercises on un-steady flow processes

Solution to exercise in Prof. Sivasegaram’s tutorial on un-steady flow: Q 1 In this prob-
lem the initial conditions of the cylinder V,T1,P1 are given. The inflow conditions Pi,Ti are
also given and the cylinder is said to be insulated. Thus δQ≡ 0.
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(a) First you are asked to find P2 and m2 for a given T2. Since P1,T1,V is given we can find
m1 using the ideal gas law, m1 =

P1V
RT1

. Then from equation (6.10) we have

m2 =

(
γTi−T1

γTi−T2

)
m1

and from the ideal gas law

P2 =
m2RT2

V
.

(b) Then you are asked to find T2 and m2 for a given P2. Once again from equation (6.9) we
have

m2 = m1 +
V

γRTi
(P2−P1),

and then from (6.10)

T2 =
m1

m2
T1 + γTi

(m2−m1)

m2
.

Solution to exercise in Prof. Sivasegaram’s tutorial on un-steady flow: Q 2 If since tem-
perature inside is maintained at a constant then T2 = T1 (then necessarily there should be
some heat interaction). The question is, what is m2 when the pressure inside the cylinder, P,
reaches a certain value P2. From the ideal gas law we have

(m2−m1) =
V (P2−P1)

RT1
,

and hence

m2 = m1 +
V (P2−P1)

RT1
.

Finally from equation (6.10) we have that the heat interaction∫ 2

1
δQ = cv(T1− γTi)(m2−m1) =

cv

R
(T1− γTi)

V (P2−P1)

T1
=

(T1− γTi)

(γ−1)
V (P2−P1)

T1
.

Solution to exercise in Prof. Sivasegaram’s tutorial on un-steady flow: Q 3 The initial P1,
T1 and the volume V of the tank are given. A leak is supposed to have formed and noticed
only when ice starts to form. That means at the moment of discovery the inside temperature
T2 = 0oC. Since the gas leaks to the atmosphere at a temperature of To and pressure Po. Since
the leaked gas eventually is at atmospheric conditions and before it leaked it was at a different
condition there is a heat interaction that occurs between the leaked gas and the atmosphere
thus the heat interaction can not be ignored even though the tank is insulated. Thus from
(6.12) we can find the heat interaction if m1 and m2 are known. Since the initial conditions
are known and from the ideal gas law we have that

m1 =
RT1

P1V
.
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Similarly from the ideal gas law we could also find m2 if we knew P2. To find this we notice
that it is given that the gas inside the tank can be assumed to behave as P/ργ = constant.
From this we have that

P1(m1
V

)γ =
P2(m2
V

)γ .

From this and using the ideal gas law we have

m1T1

m1γ
=

m2T2

m2γ
,

and hence that

m2 = m1

(
T2

T1

) 1
(γ−1)

=
RT1

P1V

(
T2

T1

) 1
(γ−1)

Hence the leaked mass is (m2−m1) and finally from (6.12) the total heat interaction is∫ 2

1
δQ =−cv(m1T1−m2T2)+ γTo(m1−m2).

Solution to exercise in Prof. Sivasegaram’s tutorial on un-steady flow: Q 4 The process of
finding the answer is similar to that of Q2 but use (6.11) and (6.12) instead.
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